

Math 469 HW #2

Due 1:00 PM Friday, Feb. 7

1. (Axler Problem 2.A.9) Prove or give a counterexample: If v_1, \dots, v_m and w_1, \dots, w_m are linearly independent lists of vectors in V , then $v_1 + w_1, \dots, v_m + w_m$ is linearly independent.
2. (Axler Problem 2.A.14) Prove that V is infinite-dimensional if and only if there is a sequence v_1, v_2, \dots of vectors in V so that v_1, \dots, v_m is linearly independent for every positive integer m .
3. (Axler Problem 2.B.5) Prove or disprove: There exists a basis p_0, p_1, p_2, p_3 of $\mathcal{P}_3(\mathbb{F})$ so that none of the polynomials p_0, p_1, p_2, p_3 has degree 2.
4. (Axler Problem 2.B.8) Suppose U and W are subspaces of V so that $V = U \oplus W$. Suppose also that u_1, \dots, u_m is a basis of U and w_1, \dots, w_n is a basis of W . Prove that

$$u_1, \dots, u_m, w_1, \dots, w_n$$

is a basis of V .