

Math 419 HW #7

Due 3:00 PM Friday, Oct. 25

1. (Jones Problem 4-1 (2.)) Suppose f has a pole at z_0 of order $\leq N$. The function $(z - z_0)^N f(z)$ has a removable singularity at z_0 . Prove that

$$\text{Res}(f, z_0) = \left. \frac{\left(\frac{d}{dz} \right)^{N-1} [(z - z_0)^N f(z)]}{(N-1)!} \right|_{z=z_0}$$

2. Show that, for $n \geq 1$,

$$\int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^{n+1}} = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} \pi.$$

(Note: The right hand side turns out to be $\frac{\Gamma(n+\frac{1}{2})}{\Gamma(n+1)} \sqrt{\pi}$, where Γ is the gamma function.¹ As $n \rightarrow \infty$, this quantity is asymptotic to $\sqrt{\pi n}$.)

¹Relating to what we've been talking about in class, the gamma function can be defined as the Mellin transform of e^{-x} : for $z \in \mathbb{C}$, $\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx$.