

Math 419 HW #6
Due 3:00 PM Friday, Oct. 18

1. Let $D \subset \mathbb{C}$ be an open set and let γ be a circle contained in D . Suppose f is holomorphic on D except possibly at a point z_0 inside γ . Prove that if f is bounded near z_0 , then

$$\int_{\gamma} f(z) \, dz = 0.$$

2. The function $f(z) = e^{1/z}$ has an essential singularity at $z = 0$. Verify the truth of Picard's great theorem for f . In other words, show that for any $w \in \mathbb{C}$ (with possibly one exception) there is a sequence z_1, z_2, \dots with $z_k \rightarrow 0$ and $f(z_k) = w$ for all k .