

Math 419 HW #5
Due 3:00 PM Friday, Oct. 4

1. Let γ be the unit circle and evaluate the integrals

(a) $\int_{\gamma} \frac{e^z}{z^2} dz$

(b) $\int_{\gamma} \frac{\sin z}{z^4} dz$

2. (Jones Problem 3-1) There is a unique Möbius transformation f of $\widehat{\mathbb{C}}$ which satisfies

$$\begin{aligned}f(0) &= -1 \\f(\infty) &= 1 \\f(i) &= 0.\end{aligned}$$

This Möbius transformation is sometimes called the *Caley transformation*.

- (a) Find a, b, c, d so that $f(z) = \frac{az+b}{cz+d}$.
- (b) Show that $f(\mathbb{R} \cup \{\infty\})$ = the unit circle.
- (c) Show that $f(\text{open upper half plane})$ = the open unit disk (i.e., the region inside the unit circle).
- (d) For several $y > 0$, sketch the image of the horizontal line $\{x + iy \mid x \in \mathbb{R}\}$ under the action of f .