

Math 419 HW #2

Due 3:00 PM Friday, Sept. 6

1. Let $\langle \cdot, \cdot \rangle$ be the usual inner product (dot product) on \mathbb{R}^2 , meaning that if $Z = (x, y)$ and $W = (u, v)$, then

$$\langle Z, W \rangle = xu + yv.$$

On the other hand, we can define a *Hermitian inner product* on \mathbb{C} by

$$\langle\langle z, w \rangle\rangle = z\bar{w}.$$

The word *Hermitian* is used to indicate that $\langle\langle \cdot, \cdot \rangle\rangle$ is not symmetric, but rather satisfies the equation

$$\langle\langle z, w \rangle\rangle = \overline{\langle\langle w, z \rangle\rangle}.$$

Show that

$$\langle z, w \rangle = \frac{1}{2} (\langle\langle z, w \rangle\rangle + \langle\langle w, z \rangle\rangle) = \operatorname{Re}(\langle\langle z, w \rangle\rangle),$$

where, as usual, we're identifying a complex number $z = x + iy$ with the vector $(x, y) \in \mathbb{R}^2$.

2. (Jones Problem 1–8) Let C be the circle in \mathbb{C} with center $a \in \mathbb{C}$ and radius $r > 0$. From p. 8 in Jones we know that a complex number z lies on C if and only if

$$|z|^2 - 2\operatorname{Re}(z\bar{a}) + |a|^2 = r^2. \quad (\star)$$

The goal is to understand what happens to C when we apply the function $f(z) = \frac{1}{z}$.

(a) If $0 \notin C$, define

$$D = \left\{ \frac{1}{z} : z \in C \right\}.$$

Prove that D is also a circle, and calculate its center and radius.

(b) If $0 \in C$, then define

$$D = \left\{ \frac{1}{z} : z \in C, z \neq 0 \right\}.$$

Describe D geometrically and prove your description is correct.

(*Hint for both parts:* If a complex number w is in D , then we know $w = \frac{1}{z}$ for some $z \in C$, meaning that $z = \frac{1}{w} \in C$. Use (\star) to see what this tells you about w and think about what it would mean to show that w lies on a circle. It will be useful to come up with a characterization of $0 \in C$ in terms of a and r .)