

Math 336 HW #6

Due 5:00 PM Tuesday, March 30

Presentation:

1. Prove that if $f : K \rightarrow L$ is a Δ -map, then the following diagram commutes (notation as in class):

$$\begin{array}{ccc} H_n^\Delta(K) & \xrightarrow{f_*} & H_n^\Delta(L) \\ \downarrow \phi_* & & \downarrow \phi_* \\ H_n(|K|) & \xrightarrow{|f|_*} & H_n(|L|) \end{array}$$

Problems:

1. Hatcher p. 133 #27
2. Hatcher p. 133 #29. By now, you can definitely use simplicial homology!
3. Let $I \subset S^2$ be the image of an embedding of $[0, 1]$, and let x be in the image of $(0, 1)$. Prove that the inclusion $i_* : H_*(S^2 \setminus x, I \setminus x) \rightarrow (S^2, I)$ is not an isomorphism.
4. To prove the homotopy invariance property of homology (i.e. if $f, g : X \rightarrow Y$ are homotopic, then they induce the same map on homology), we constructed a chain homotopy between $f_\#$ and $g_\#$ using the prism operator P . To better understand one part of the proof of excision, let's construct a different chain homotopy in a similar manner to the construction of the subdivision chain map S .

- (a) Define an operation T^Δ on the identity map $\delta_n : \Delta^n \rightarrow \Delta^n$ whose image is a chain with image in $\Delta^n \times I$ inductively as follows. Let $i_j : \Delta^n \rightarrow \Delta_n \times I$ for $j = 0, 1$ be the inclusion into $\Delta^n \times \{j\}$. Let v be point $q \times \{\frac{1}{2}\} \in \Delta^n \times I$, where q is the barycenter of Δ^n . Then make the following inductive definition:

$$T^\Delta \delta_n = c_v (i_1 \delta_n - i_0 \delta_n - T^\Delta \partial \delta_n).$$

Prove that T^Δ acts like a chain homotopy operator between i_0 and i_1 on the simplex δ_n (that is, it satisfies the same equation when applied to δ_n).

- (b) Transfer T^Δ to a map from $C_n(X)$ to $C_{n+1}(Y)$ and prove that it is a chain homotopy between $f_\#$ and $g_\#$.
5. Let K be a finite Δ -complex with c_i i -simplices, and define the *Euler characteristic* of K to be:

$$\chi(K) = \sum_{i=0}^{\infty} (-1)^i c_i.$$

Prove that if $|K|$ is homeomorphic to $|L|$, then $\chi(K) = \chi(L)$.

HINT: Think of c_i as the rank of the free abelian group $\Delta_i(K)$ and show that $\chi(K) = \sum_{i=0}^{\infty} (-1)^i \text{rank } H_i(|K|)$. Note that the rank of a free abelian group is simply the rank of its free part (e.g. $\text{rank } (\mathbb{Z}^2 \oplus \mathbb{Z}_3) = 2$). You'll want to generalize the Rank-Nullity theorem to finitely generated abelian groups.

NOTE: This is the “real” reason that Euler’s Formula $V - E + F = 2$ is true (where V , E , and F are the number of vertices, edges, and faces, respectively, of a polyhedron).