

Math 336 HW #3

Due 5:00 PM Tuesday, February 16

Presentations:

1. In the proof that a short exact sequence of chain complex yields a long exact sequence in homology, we defined a map $\partial_* : H_n(C) \rightarrow H_{n-1}(A)$. Show that this map is well-defined, i.e. that it doesn't depend on the choice of β and that $\partial_*[\alpha] = \partial_*[\alpha + \partial_C w]$.
2. Again in the proof that short exact sequence of chain complex yields a long exact sequence in homology, we left out the verification of exactness at $H_n(B)$. Do it.

Problems:

1. Before doing this problem, you should convince yourself of the following facts about the maps induced by Δ -maps (you do not need to write down the proofs):
 - (a) If $f : K \rightarrow K'$ and $g : K' \rightarrow K''$ are Δ -maps, then so is $f \circ g$ and, further, $(f \circ g)_\# = f_\# \circ g_\#$.
 - (b) If $i : K \rightarrow K$ is the identity Δ -map, then $i_\#$ is the identity map on the simplicial chain complex $\Delta_*(K)$.

Now prove that if $A \subset K$ is a subcomplex and $r : K \rightarrow A$ is a Δ -map such that $r \circ i$ is the identity on K , then the map induced by inclusion $i_* : H_n^\Delta(A) \rightarrow H_n^\Delta(K)$ is injective.

2. (a) Hatcher p. 132 #15. For the second part, there's really nothing for you to do except "notice" the conclusion for yourselves — and this really tells you important information about the meaning and use of the relative homology!
 - (b) If $\mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \rightarrow C \rightarrow \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z}$ is exact, where " $\times 2$ " is the map $f(n) = 2n$, then find the group C .
3. Hatcher p. 132 #17(b). For this problem, you should still be using simplicial homology, so you'll have to find Δ -complexes for the surface of genus 2 that contain A and B as subcomplexes.
4. Prove the (incredibly useful) 5-lemma: if the top and bottom rows of the following diagram are exact, and if α, β, δ , and ϵ are isomorphisms, then prove that γ is also an isomorphism.

$$\begin{array}{ccccccc}
 A & \longrightarrow & B & \longrightarrow & C & \longrightarrow & D \longrightarrow E \\
 \downarrow \alpha & & \downarrow \beta & & \downarrow \gamma & & \downarrow \delta \\
 A' & \longrightarrow & B' & \longrightarrow & C' & \longrightarrow & D' \longrightarrow E'
 \end{array}$$

5. (a) Let $K^{(1)}$ be the union of 1- and 0-simplices of a Δ -complex K , and assume that $|K^{(1)}|$ is connected. Prove that $H_0^\Delta(K) \simeq \mathbb{Z}$, generated by the homology class $[x]$ for some (any!) 0-simplex x .

(b) Let K be a Δ -complex and let CK be its cone, as defined in the last problem set.
Let $K^{(1)}$ be the union of 1- and 0-simplices of K , and assume that $|K^{(1)}|$ is connected.
Compute $H_n^\Delta(CK, K)$ for all n .