Math 2260 Exam \#3 Solutions

1. Consider the sequence $\left(a_{n}\right)_{n=1}^{\infty}$ where

$$
a_{n}=\left(n^{2}+n\right)^{1 / n}
$$

Does this sequence converge or diverge? If it converges, find its limit.
Answer: Notice that the term inside parentheses is going to ∞, whereas the power is going to zero, so this is an indeterminate form. To deal with it, first find the limit of the sequence of natural logarithms:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \ln \left(\left(n^{2}+n\right)^{1 / n}\right) & =\lim _{n \rightarrow \infty} \frac{1}{n} \ln \left(n^{2}+n\right) \\
& =\lim _{n \rightarrow \infty} \frac{\ln \left(n^{2}+n\right)}{n} \\
& =\lim _{x \rightarrow \infty} \frac{\ln \left(x^{2}+x\right)}{x} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{2}+x}(2 x+1)}{1} \\
& =\lim _{x \rightarrow \infty} \frac{2 x+1}{x^{2}+x} \\
& =0
\end{aligned}
$$

where I went from the third to the fourth lines using L'Hôpital's Rule.
Therefore,

$$
\lim _{n \rightarrow \infty}\left(n^{2}+n\right)^{1 / n}=e^{0}=1
$$

so the sequence converges to 1 .
2. Does the series

$$
\sum_{n=1}^{\infty} 7^{n+1} \frac{(-1)^{n}}{6^{n-1}}
$$

converge or diverge? If it converges, find its sum. If it diverges, explain why.
Answer: Since everything in sight is being raised to a power involving n, this looks like geometric series. To confirm that intuition, write out the first few terms:

$$
\sum_{n=1}^{\infty} 7^{n+1} \frac{(-1)^{n}}{6^{n-1}}=-7^{2}+\frac{7^{3}}{6}-\frac{7^{4}}{6^{2}}+\frac{7^{5}}{6^{3}}-\ldots
$$

Now factor -7^{2} out of this sum:

$$
-7^{2}\left(1-\frac{7}{6}+\frac{7^{2}}{6^{2}}-\frac{7^{3}}{6^{3}}+\ldots\right)
$$

Hence, this is a geometric series with $a=-7^{2}=-49$ and $r=-\frac{7}{6}$. Since

$$
|r|=\left|-\frac{7}{6}\right|=\frac{7}{6}>1
$$

the series must diverge.
3. For what values of p does the series

$$
\sum_{n=1}^{\infty} \frac{n^{p}}{3+n^{3}}
$$

converge? Explain your answer.
Answer: This series looks quite similar to the series

$$
\sum_{n=1}^{\infty} \frac{n^{p}}{n^{3}}
$$

To make "looks quite similar to" more precise, I'll do a limit comparison:

$$
\lim _{n \rightarrow \infty} \frac{\frac{n^{p}}{3+n^{3}}}{\frac{n^{p}}{n^{3}}}=\lim _{n \rightarrow \infty} \frac{n^{p}}{3+n^{3}} \cdot \frac{n^{3}}{n^{p}}=\lim _{n \rightarrow \infty} \frac{3+n^{3}}{n^{3}}=1
$$

Therefore, the given series will converge precisely when the series

$$
\sum_{n=1}^{\infty} \frac{n^{p}}{n^{3}}=\sum_{n=1}^{\infty} \frac{1}{n^{3-p}}
$$

converges. This series will converge precisely when the power on n is greater than 1 , meaning when $3-p>1$ or $p<2$.

To demonstrate this rigorously, I can use the Integral Test:

$$
\int_{1}^{\infty} \frac{1}{x^{3-p}} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x^{3-p}} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} x^{p-3} d x
$$

So long as $p-3 \neq-1$, meaning $p \neq 2$, this is equal to

$$
\begin{aligned}
\lim _{b \rightarrow \infty}\left[\frac{x^{p-3+1}}{p-3+1}\right]_{1}^{b} & =\lim _{b \rightarrow \infty}\left[\frac{x^{p-2}}{p-2}\right]_{1}^{b} \\
& =\lim _{b \rightarrow \infty}\left(\frac{b^{p-2}}{p-2}-\frac{1}{p-2}\right)
\end{aligned}
$$

which converges to $\frac{1}{2-p}$ when $p<2$ and diverges when $p>2$.
Finally, when $p=2$, the integral above is equal to

$$
\lim _{b \rightarrow \infty}[\ln (x)]_{1}^{b}=\lim _{b \rightarrow \infty}(\ln (b)-\ln (1))=\infty
$$

Therefore, the integral, and hence the series, converges precisely when $p<2$.
4. What is the interval of convergence of the following power series? Explain your answer.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-2)^{n}}{n 3^{n}}
$$

Answer: Use the Ratio Test on the series of absolute values to get started:

$$
\lim _{n \rightarrow \infty} \frac{\left|\frac{(-1)^{n+1}(x-2)^{n+1}}{(n+1) 3^{n+1}}\right|}{\left|\frac{(-1)^{n}(x-2)^{n}}{n 3^{n}}\right|}=\lim _{n \rightarrow \infty} \frac{|x-2|^{n+1}}{(n+1) 3^{n+1}} \cdot \frac{n 3^{n}}{|x-2|^{n}}=\lim _{n \rightarrow \infty} \frac{|x-2|}{3} \cdot \frac{n}{n+1}=\frac{|x-2|}{3}
$$

Therefore, the given series converges absolutely when $\frac{|x-2|}{3}<1$, meaning when $|x-2|<3$. Now, check the endpoints. When $x-2=3$, the series becomes

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} 3^{n}}{n 3^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

which satisfies the hypotheses of the Alternating Series Test and hence converges.
On the other hand, when $x-2=-3$, the series becomes

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}(-3)^{n}}{n 3^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}(-1)^{n} 3^{n}}{n 3^{n}}=\sum_{n=1}^{\infty} \frac{1}{n}
$$

which diverges.
Therefore, the series converges for

$$
-3<x-2 \leq 3
$$

or, adding 2 to each of the three terms,

$$
-1<x \leq 5
$$

so the interval of convergence is $(-1,5]$.
5. Find the Taylor series centered at $x=\pi$ for the function

$$
f(x)=\sin (2 x)
$$

(It suffices to write down, say, the first three non-zero terms, but it's even better to give the general form.)
Answer: Remember that the Taylor series for $f(x)$ centered at $x=\pi$ is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(\pi)}{n!}(x-\pi)^{n}
$$

so we need to know the values of the derivatives of f at $x=\pi$. First, I compute the derivatives:

$$
\begin{aligned}
f^{\prime}(x) & =2 \cos (2 x) \\
f^{\prime \prime}(x) & =-4 \sin (2 x) \\
f^{\prime \prime \prime}(x) & =-8 \cos (2 x) \\
f^{(4)}(x) & =16 \sin (2 x) \\
f^{(5)}(x) & =32 \cos (2 x)
\end{aligned}
$$

\vdots
Therefore, the values of f and its derivatives at $x=\pi$ are

$$
\begin{aligned}
f(\pi) & =\sin (2 \pi)=0 \\
f^{\prime}(\pi) & =2 \cos (2 \pi)=2 \\
f^{\prime \prime}(\pi) & =-4 \sin (2 \pi)=0 \\
f^{\prime \prime \prime}(\pi) & =-8 \cos (2 \pi)=-8 \\
f^{(4)}(\pi) & =16 \sin (2 \pi)=0 \\
f^{(5)}(\pi) & =32 \cos (2 \pi)=32
\end{aligned}
$$

Therefore, the Taylor series centered at $x=\pi$ is

$$
\begin{aligned}
0+\frac{2}{1!}(x-\pi)+0-\frac{8}{3!}(x-\pi)^{3}+0+\frac{32}{5!}(x-\pi)^{5}+\ldots & =\frac{2}{1!}(x-\pi)-\frac{8}{3!}(x-\pi)^{3}+\frac{32}{5!}(x-\pi)^{5}-\ldots \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2 n+1}}{(2 n+1)!}(x-\pi)^{2 n+1}
\end{aligned}
$$

