

Math 2260 Written HW #7 Solutions

1. (a) Use integration by parts to show that

$$\int (\ln x)^n dx = x(\ln x)^n - n \int (\ln x)^{n-1} dx.$$

Answer: For the integration by parts, let $u = (\ln x)^n$ and let $dv = dx$. Then we have

$$\begin{aligned} u &= (\ln x)^n & dv &= dx \\ du &= n(\ln x)^{n-1} \frac{1}{x} & v &= x. \end{aligned}$$

Integrating by parts yields

$$\begin{aligned} \int (\ln x)^n dx &= x(\ln x)^n - \int x \left(n(\ln x)^{n-1} \frac{1}{x} \right) dx \\ &= x(\ln x)^n - n \int (\ln x)^{n-1} dx, \end{aligned}$$

as desired.

(b) Use part (a) to evaluate the integral

$$\int (\ln x)^2 dx.$$

Answer: Using part (a) with $n = 2$, we know that

$$\int (\ln x)^2 dx = x(\ln x)^2 - 2 \int \ln x dx. \quad (*)$$

Now, if we use part (a) on the second term with $n = 1$, we have

$$\begin{aligned} \int \ln x dx &= x \ln x - \int (\ln x)^0 dx \\ &= x \ln x - \int dx \\ &= x \ln x - x + C. \end{aligned}$$

Substituting this into (*) gives us

$$\begin{aligned} \int (\ln x)^2 dx &= x(\ln x)^2 - 2 [x \ln x - x] + C \\ &= x(\ln x)^2 - 2x \ln x + 2x + C. \end{aligned}$$

2. Find the area of the region between the x -axis and the curve $y = \sqrt{1 + \cos(4x)}$ for $0 \leq x \leq \pi$.
(Careful! Remember that $\sqrt{f(x)^2} = |f(x)|$.)

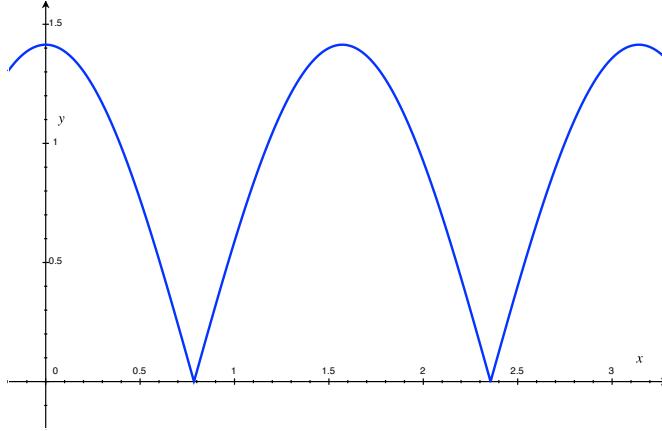
Answer: Notice that, by using the power-reduction formula backwards,

$$1 + \cos(4x) = 2 \cos^2(2x).$$

Therefore,

$$\int_0^\pi \sqrt{1 + \cos(4x)} dx = \int_0^\pi \sqrt{2 \cos^2(2x)} dx = \int_0^\pi \sqrt{2} |\cos(2x)| dx.$$

Here's a graph of the function $y = \sqrt{2} |\cos(2x)|$:



To deal with the absolute value, I could either split the integral up into three pieces (namely $[0, \pi/4]$, $[\pi/4, 3\pi/4]$, and $[3\pi/4, \pi]$), or just notice that the total area under the curve from 0 to π is four times the area under the curve from 0 to $\pi/4$. Since $\cos(2x)$ is non-negative on $[0, \pi/4]$, then,

$$\begin{aligned} \int_0^\pi \sqrt{2} |\cos(2x)| dx &= 4 \int_0^{\pi/4} \sqrt{2} |\cos(2x)| dx \\ &= 4 \int_0^{\pi/4} \sqrt{2} \cos(2x) dx \\ &= 4 \left[\sqrt{2} \frac{\sin(2x)}{2} \right]_0^{\pi/4} \\ &= 4 \left[\sqrt{2} \frac{1}{2} - 0 \right] \\ &= 2\sqrt{2}, \end{aligned}$$

so the area of the region between the x -axis and the curve $y = \sqrt{1 + \cos(4x)}$ for $0 \leq x \leq \pi$ is $2\sqrt{2}$.

- Evaluate the indefinite integral

$$\int \frac{dx}{x^2 \sqrt{x^2 + 1}}.$$

Answer: Since I see a term of the form $x^2 + a^2$, my first thought is to try a trigonometric substitution. In this case, since $a = 1$, I should let

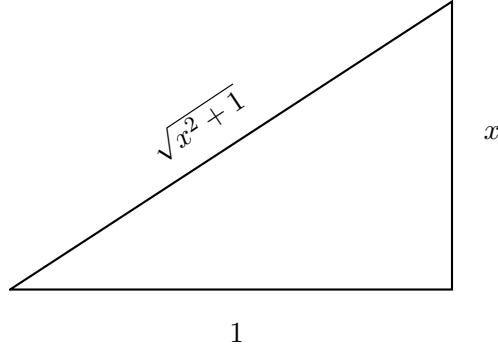
$$x = \tan \theta$$

$$dx = \sec^2 \theta d\theta$$

Substituting that into the above integral, then, I have

$$\begin{aligned}
\int \frac{dx}{x^2\sqrt{x^2+1}} &= \int \frac{\sec^2 \theta d\theta}{\tan^2 \theta \sqrt{\tan^2 \theta + 1}} \\
&= \int \frac{\sec^2 \theta d\theta}{\tan^2 \theta \sqrt{\sec^2 \theta}} \\
&= \int \frac{\sec \theta d\theta}{\tan^2 \theta} \\
&= \int \frac{1}{\cos \theta \sin^2 \theta} d\theta \\
&= \int \frac{\cos \theta}{\sin^2 \theta} d\theta \\
&= \int \frac{1}{\sin \theta} \frac{\cos \theta}{\sin \theta} d\theta \\
&= \int \csc \theta \cot \theta d\theta \\
&= -\csc \theta + C.
\end{aligned}$$

Now, to convert back in terms of x , notice that $\tan \theta = x$, which means I can visualize θ as the bottom-left angle in the following right triangle:



Therefore, $\csc \theta = \frac{1}{\sin \theta} = \frac{\sqrt{x^2+1}}{x}$, and so I can conclude that

$$\int \frac{dx}{x^2\sqrt{x^2+1}} dx = -\frac{\sqrt{x^2+1}}{x} + C.$$