
Math 2260 Written HW #7 Solutions

1. (a) Use integration by parts to show that∫
(lnx)n dx = x(lnx)n − n

∫
(lnx)n−1 dx.

Answer: For the integration by parts, let u = (lnx)n and let dv = dx. Then we have

u = (lnx)n dv = dx

du = n(lnx)n−1
1

x
v = x.

Integrating by parts yields∫
(lnx)n dx = x(lnx)n −

∫
x

(
n(lnx)n−1

1

x

)
dx

= x(lnx)n − n
∫

(lnx)n−1 dx,

as desired.

(b) Use part (a) to evaluate the integral ∫
(lnx)2 dx.

Answer: Using part (a) with n = 2, we know that∫
(lnx)2 dx = x(lnx)2 − 2

∫
lnx dx. (∗)

Now, if we we part (a) on the second term with n = 1, we have∫
lnx dx = x lnx−

∫
(lnx)0 dx

= x lnx−
∫
dx

= x lnx− x+ C.

Substituting this into (∗) gives us∫
(lnx)2 dx = x(lnx)2 − 2 [x lnx− x] + C

= x(lnx)2 − 2x lnx+ 2x+ C.

2. Find the area of the region between the x-axis and the curve y =
√

1 + cos(4x) for 0 ≤ x ≤ π.

(Careful! Remember that
√
f(x)2 = |f(x)|.)

Answer: Notice that, by using the power-reduction formula backwards,

1 + cos(4x) = 2 cos2(2x).
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Therefore, ∫ π

0

√
1 + cos(4x) dx =

∫ π

0

√
2 cos2(2x) dx =

∫ π

0

√
2| cos(2x)| dx.

Here’s a graph of the function y =
√

2| cos(2x)|:
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To deal with the absolute value, I could either split the integral up into three pieces (namely
[0, π/4], [π/4, 3π/4], and [3π/4, π]), or just notice that the total area under the curve from 0
to π is four times the area under the curve from 0 to π/4. Since cos(2x) is non-negative on
[0, π/4], then, ∫ π

0

√
2| cos(2x)| dx = 4

∫ π/4

0

√
2| cos(2x)| dx

= 4

∫ π/4

0

√
2 cos(2x) dx

= 4

[√
2

sin(2x)

2

]π/4
0

= 4

[√
2

1

2
− 0

]
= 2
√

2,

so the area of the region between the x-axis and the curve y =
√

1 + cos(4x) for 0 ≤ x ≤ π
is 2
√

2.

3. Evaluate the indefinite integral ∫
dx

x2
√
x2 + 1

.

Answer: Since I see a term of the form x2 + a2, my first thought is to try a trigonometric
substitution. In this case, since a = 1, I should let

x = tan θ

dx = sec2 θ dθ
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Substituting that into the above integral, then, I have∫
dx

x2
√
x2 + 1

=

∫
sec2 θ dθ

tan2 θ
√

tan2 θ + 1

=

∫
sec2 θ dθ

tan2 θ
√

sec2 θ

=

∫
sec θ dθ

tan2 θ

=

∫
1

cos θ

cos2 θ

sin2 θ
dθ

=

∫
cos θ

sin2 θ
dθ

=

∫
1

sin θ

cos θ

sin θ
dθ

=

∫
csc θ cot θ dθ

= − csc θ + C.

Now, to convert back in terms of x, notice that tan θ = x, which means I can visualize θ as
the bottom-left angle in the following right triangle:

x

1

√ x
2 +

1

Therefore, csc θ = 1
sin θ =

√
x2+1
x , and so I can conclude that∫

dx

x2
√
x2 + 1

dx = −
√
x2 + 1

x
+ C.
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