Math 2260 Written HW #2 Solutions

1. Find the area of the region that is enclosed between the curves y = 2sin(x) and y = 2 cos(x)
from z =0 to z = 7/2.

Answer: The desired area is pictured below:
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In the figure, the blue curve is y = 2sin(x) and the red curve is y = 2cos(z). Since the top
of the region is the blue curve between 0 and /4 (since 2 cos(z) = 2sin(x) when x = 7/4),
whereas the top of the region is the red curve between 7/4 and 7 /2, we need to compute the
area in two parts:
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Therefore, the area of the shaded region is 4 — 21/2.



2. Find the volume of the solid generated by revolving the region bounded by the z-axis and
the semicircle y = v/4 — x2 around the z-axis.

Answer: First, here’s the graph of the function y = /4 — x2:
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Revolving around the z-axis will yield a sphere like this one:

Now, each cross section of the sphere is a circle of radius v4 — x2, so we know that the
cross-sectional area is

Alz) == (\/4 - a:2>2 =n(4 — 2?) = 4n — 72>

2



Now the volume of this solid is given by integrating A(z) along its length. Since the graph
y = V4 — 22 intersects the z-axis at = +2, we should integrate from —2 to 2. Therefore,
the volume of the sphere is
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Thus, the volume of the given solid is ?’QT”



