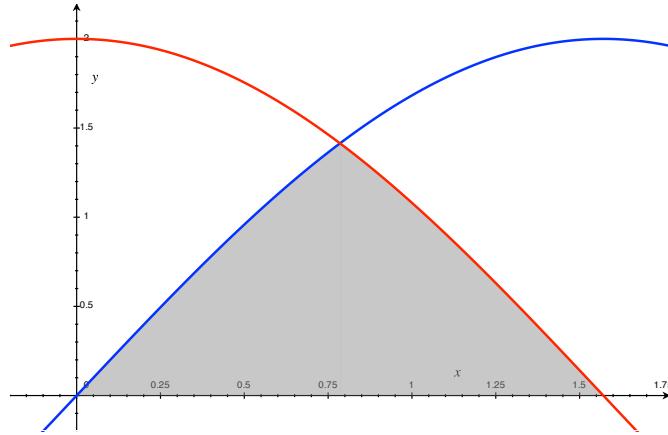


Math 2260 Written HW #2 Solutions

1. Find the area of the region that is enclosed between the curves $y = 2 \sin(x)$ and $y = 2 \cos(x)$ from $x = 0$ to $x = \pi/2$.

Answer: The desired area is pictured below:



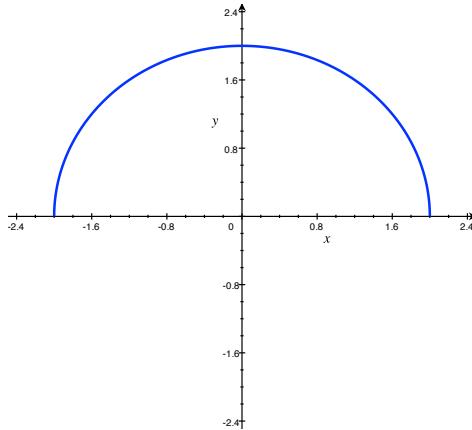
In the figure, the blue curve is $y = 2 \sin(x)$ and the red curve is $y = 2 \cos(x)$. Since the top of the region is the blue curve between 0 and $\pi/4$ (since $2 \cos(x) = 2 \sin(x)$ when $x = \pi/4$), whereas the top of the region is the red curve between $\pi/4$ and $\pi/2$, we need to compute the area in two parts:

$$\begin{aligned}
 \text{Area} &= \int_0^{\pi/4} 2 \sin(x) \, dx + \int_{\pi/4}^{\pi/2} 2 \cos(x) \, dx \\
 &= \left[-2 \cos(x) \right]_0^{\pi/4} + \left[2 \sin(x) \right]_{\pi/4}^{\pi/2} \\
 &= [-2 \cos(\pi/4) + 2 \cos(0)] + [2 \sin(\pi/2) - 2 \sin(\pi/4)] \\
 &= \left[-2 \cdot \frac{1}{\sqrt{2}} + 2 \cdot 1 \right] + \left[2 \cdot 1 - 2 \cdot \frac{1}{\sqrt{2}} \right] \\
 &= [-\sqrt{2} + 2] + [2 - \sqrt{2}] \\
 &= 4 - 2\sqrt{2}.
 \end{aligned}$$

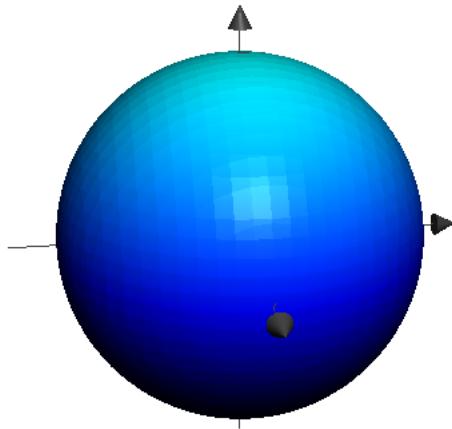
Therefore, the area of the shaded region is $4 - 2\sqrt{2}$.

2. Find the volume of the solid generated by revolving the region bounded by the x -axis and the semicircle $y = \sqrt{4 - x^2}$ around the x -axis.

Answer: First, here's the graph of the function $y = \sqrt{4 - x^2}$:



Revolving around the x -axis will yield a sphere like this one:



Now, each cross section of the sphere is a circle of radius $\sqrt{4 - x^2}$, so we know that the cross-sectional area is

$$A(x) = \pi \left(\sqrt{4 - x^2} \right)^2 = \pi(4 - x^2) = 4\pi - \pi x^2.$$

Now the volume of this solid is given by integrating $A(x)$ along its length. Since the graph $y = \sqrt{4 - x^2}$ intersects the x -axis at $x = \pm 2$, we should integrate from -2 to 2 . Therefore, the volume of the sphere is

$$\begin{aligned}
\int_{-2}^2 A(x) dx &= \int_{-2}^2 (4\pi - \pi x^2) dx \\
&= \left[4\pi x - \pi \frac{x^3}{3} \right]_{-2}^2 \\
&= \left(4\pi(2) - \pi \cdot \frac{2^3}{3} \right) - \left(4\pi(-2) - \pi \cdot \frac{(-2)^3}{3} \right) \\
&= \left(8\pi - \frac{8\pi}{3} \right) - \left(-8\pi + \frac{8\pi}{3} \right) \\
&= 16\pi - \frac{16\pi}{3} \\
&= \frac{32\pi}{3}.
\end{aligned}$$

Thus, the volume of the given solid is $\frac{32\pi}{3}$.