

Math 2260 Written HW #15 Solutions

1. Suppose \vec{u} and \vec{v} are vectors in space such that $|\vec{u}| = |\vec{v}|$. What can you say about the angle between the vectors $\vec{u} + \vec{v}$ and $\vec{u} - \vec{v}$?

Answer: Notice that

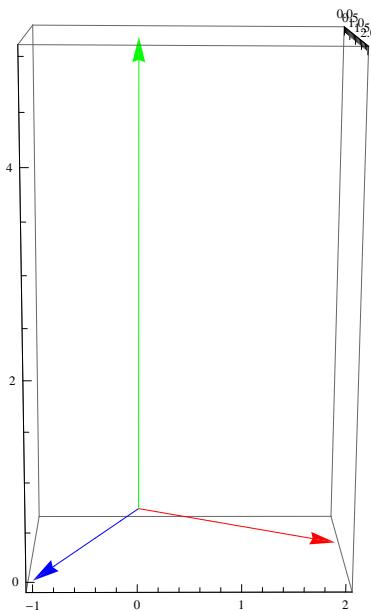
$$(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v}) = \vec{u} \cdot \vec{u} + \vec{v} \cdot \vec{u} - \vec{u} \cdot \vec{v} - \vec{v} \cdot \vec{v} = \vec{u} \cdot \vec{u} - \vec{v} \cdot \vec{v}.$$

Therefore, since $\vec{u} \cdot \vec{u} = |\vec{u}|^2$ and $\vec{v} \cdot \vec{v} = |\vec{v}|^2$ and since $|\vec{u}| = |\vec{v}|$, it follows that

$$(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v}) = |\vec{u}|^2 - |\vec{v}|^2 = 0.$$

Hence, $\vec{u} + \vec{v}$ and $\vec{u} - \vec{v}$ are perpendicular whenever \vec{u} and \vec{v} are the same length.

2. Let $\vec{u} = 2\vec{i} - \vec{j}$ and let $\vec{v} = \vec{i} + 2\vec{j}$.


(a) What is the vector $\vec{u} \times \vec{v}$?

Answer: By definition,

$$\begin{aligned} \vec{u} \times \vec{v} &= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -1 & 0 \\ 1 & 2 & 0 \end{vmatrix} \\ &= \vec{i}((-1)(0) - (0)(2)) - \vec{j}((2)(0) - (0)(1)) + \vec{k}((2)(2) - (-1)(1)) \\ &= 0\vec{i} + 0\vec{j} + 5\vec{k} \\ &= 5\vec{k}. \end{aligned}$$

(b) Draw the vectors \vec{u} , \vec{v} , and $\vec{u} \times \vec{v}$.

Answer: \vec{u} , \vec{v} , and $\vec{u} \times \vec{v}$.

