

Math 2260 Written HW #11 Solutions

1. Does the series

$$\sum_{k=0}^{\infty} \frac{\cos(k\pi)}{5^k}$$

converge or diverge? If it converges, find its sum, and if it diverges, explain why.

Answer: Notice that $\cos(k\pi)$ is equal to 1 if k is even and -1 if k is odd; in other words,

$$\cos(k\pi) = (-1)^k$$

for all k . Therefore,

$$\sum_{k=0}^{\infty} \frac{\cos(k\pi)}{5^k} = \sum_{k=0}^{\infty} \frac{(-1)^k}{5^k} = \sum_{k=0}^{\infty} \left(\frac{-1}{5}\right)^k,$$

which can also be written as

$$\sum_{k=1}^{\infty} \left(\frac{-1}{5}\right)^{k-1}.$$

Either way, this is a geometric series with $a = 1$ and $r = -1/5$. Since $|-1/5| < 1$, we know the series converges to

$$\frac{1}{1 - (-1/5)} = \frac{1}{6/5} = \frac{5}{6}.$$

2. Find examples of convergent geometric series $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ so that

- $\sum_{k=1}^{\infty} a_k = A$ and $\sum_{k=1}^{\infty} b_k = B$ for some numbers A and B ,
- $\sum_{k=1}^{\infty} a_k b_k$ converges, but
- $\sum_{k=1}^{\infty} a_k b_k \neq AB$.

Answer: Let $a_k = \left(\frac{-1}{2}\right)^{k-1}$ and let $b_k = \left(\frac{-1}{3}\right)^{k-1}$ for all k . Then

$$\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} \left(\frac{-1}{2}\right)^{k-1} = \frac{1}{1 - (-1/2)} = \frac{1}{3/2} = \frac{2}{3}$$

since this is a geometric series. Similarly,

$$\sum_{k=1}^{\infty} b_k = \sum_{k=1}^{\infty} \left(\frac{-1}{3}\right)^{k-1} = \frac{1}{1 - (-1/3)} = \frac{1}{4/3} = \frac{3}{4}.$$

On the other hand,

$$\sum_{k=1}^{\infty} a_k b_k = \sum_{k=1}^{\infty} \left(\frac{-1}{2}\right)^{k-1} \left(\frac{-1}{3}\right)^{k-1} = \sum_{k=1}^{\infty} \left(\frac{1}{6}\right)^{k-1} = \frac{1}{1 - 1/6} = \frac{1}{5/6} = \frac{6}{5},$$

which is not equal to $\frac{2}{3} \cdot \frac{3}{4} = \frac{1}{2}$, so these series satisfy the conditions laid out above.

3. Does the series

$$\sum_{k=1}^{\infty} \frac{e^k}{1+e^{2k}}$$

converge or diverge? Explain your answer.

Answer: I intend to show that the series converges by using the Integral Test. Hence, I need to evaluate the integral

$$\int_1^{\infty} \frac{e^x}{1+e^{2x}} dx = \lim_{b \rightarrow \infty} \int_1^b \frac{e^x}{1+e^{2x}} dx.$$

Let $u = e^x$. Then $du = e^x dx$ and, since $u(1) = e^1 = e$ and $u(b) = e^b$, the above integral becomes

$$\lim_{b \rightarrow \infty} \int_e^{e^b} \frac{du}{1+u^2}.$$

In turn, using the trig substitution $u = \tan \theta$, I have $du = \sec^2 \theta d\theta$ and hence the above integral is equal to

$$\begin{aligned} \lim_{b \rightarrow \infty} \int_{\arctan(e)}^{\arctan(e^b)} \frac{\sec^2 \theta d\theta}{1+\tan^2 \theta} &= \lim_{b \rightarrow \infty} \int_{\arctan(e)}^{\arctan(e^b)} \frac{\sec^2 \theta d\theta}{\sec^2 \theta} \\ &= \lim_{b \rightarrow \infty} \int_{\arctan(e)}^{\arctan(e^b)} d\theta \\ &= \lim_{b \rightarrow \infty} \left[\theta \right]_{\arctan(e)}^{\arctan(e^b)} \\ &= \lim_{b \rightarrow \infty} \left(\arctan(e^b) - \arctan(e) \right) \\ &= \frac{\pi}{2} - \arctan(e). \end{aligned}$$

This is some number (which is approximately 0.353...) so the integral converges. Therefore, the Integral Test implies that the series $\sum_{k=1}^{\infty} \frac{e^k}{1+e^{2k}}$ also converges.