Math 215 HW \#7 Solutions

1. Problem 3.3.8. If P is the projection matrix onto a k-dimensional subspace \mathbf{S} of the whole space \mathbb{R}^{n}, what is the column space of P and what is its rank?
Answer: The column space of P is \mathbf{S}. To see this, notice that, if $\vec{x} \in \mathbb{R}^{n}$, then $P \vec{x} \in \mathbf{S}$ since P projects \vec{x} to \mathbf{S}. Therefore, $\operatorname{col}(P) \subset \mathbf{S}$. On the other hand, if $\vec{b} \in \mathbf{S}$, then $P \vec{b}=\vec{b}$, so $\mathbf{S} \subset \operatorname{col}(P)$. Since containment goes both ways, we see that $\operatorname{col}(P)=\mathbf{S}$.
Therefore, since the rank of P is equal to the dimension of $\operatorname{col}(P)=\mathbf{S}$ and since \mathbf{S} is k dimensional, we see that the rank of P is k.
2. Problem 3.3.12. If \mathbf{V} is the subspace spanned by $(1,1,0,1)$ and $(0,0,1,0)$, find
(a) a basis for the orthogonal complement \mathbf{V}^{\perp}.

Answer: Consider the matrix

$$
A=\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

By construction, the row space of A is equal to \mathbf{V}. Therefore, since the nullspace of any matrix is the orthogonal complement of the row space, it must be the case that $\mathbf{V}^{\perp}=\operatorname{nul}(A)$. The matrix A is already in reduced echelon form, so we can see that the homogeneous equation $A \vec{x}=\overrightarrow{0}$ is equivalent to

$$
\begin{aligned}
& x_{1}=-x_{2}-x_{4} \\
& x_{3}=0 .
\end{aligned}
$$

Therefore, the solutions of the homogeneous equation are of the form

$$
x_{2}\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right]
$$

so the following is a basis for $\operatorname{nul}(A)=\mathbf{V}^{\perp}$:

$$
\left\{\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

(b) the projection matrix P onto \mathbf{V}.

Answer: From part (a), we have that \mathbf{V} is the row space of A or, equivalently, \mathbf{V} is the column space of

$$
B=A^{T}=\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right]
$$

Therefore, the projection matrix P onto $\mathbf{V}=\operatorname{col}(B)$ is

$$
P=B\left(B^{T} B\right)^{-1} B^{T}=A^{T}\left(A A^{T}\right)^{-1} A .
$$

Now,

$$
B^{T} B=A A^{T}=\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right]
$$

so

$$
\left(A A^{T}\right)^{-1}=\left[\begin{array}{cc}
\frac{1}{3} & 0 \\
0 & 1
\end{array}\right]
$$

Therefore,

$$
\begin{aligned}
P & =A^{T}\left(A A^{T}\right)^{-1} A \\
& =\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
\frac{1}{3} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{llll}
\frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\
0 & 0 & 1 & 0
\end{array}\right] \\
& =\left[\begin{array}{llll}
\frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\
0 & 0 & 1 & 0 \\
\frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3}
\end{array}\right]
\end{aligned}
$$

(c) the vector in \mathbf{V} closest to the vector $\vec{b}=(0,1,0,-1)$ in \mathbf{V}^{\perp}.

Answer: The closest vector to \vec{b} in \mathbf{V} will necessarily be the projection of \vec{b} onto \mathbf{V}. Since \vec{b} is perpendicular to \mathbf{V}, we know this will be the zero vector. We can also doublecheck this since the projection of \vec{b} onto \mathbf{V} is

$$
P \vec{b}=\left[\begin{array}{cccc}
\frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\
0 & 0 & 1 & 0 \\
\frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3}
\end{array}\right]\left[\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

3. Problem 3.3.22. Find the best line $C+D t$ to fit $b=4,2,-1,0,0$ at times $t=-2,-1,0,1,2$. Answer: If the above data points actually lay on a straight line $C+D t$, we would have

$$
\left[\begin{array}{cc}
1 & -2 \\
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
C \\
D
\end{array}\right]=\left[\begin{array}{c}
4 \\
2 \\
-1 \\
0 \\
0
\end{array}\right]
$$

Call the matrix A and the vector on the right-hand side \vec{b}. Of course this system is inconsistent, but we want to find $\widehat{x}=\left[\begin{array}{c}C \\ D\end{array}\right]$ such that $A \widehat{x}$ is as close as possible to \vec{b}. As we've seen, the correct choice of \widehat{x} is given by

$$
\widehat{x}=\left(A^{T} A\right)^{-1} A^{T} \vec{b} .
$$

To compute this, first note that

$$
A^{T} A=\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
-2 & -1 & 0 & 1 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{cc}
5 & 0 \\
0 & 10
\end{array}\right]
$$

Therefore,

$$
\left(A^{T} A\right)^{-1}=\left[\begin{array}{cc}
\frac{1}{5} & 0 \\
0 & \frac{1}{10}
\end{array}\right]
$$

and so

$$
\begin{aligned}
\widehat{x} & =\left(A^{T} A\right)^{-1} A^{T} \vec{b} \\
& =\left[\begin{array}{cc}
\frac{1}{5} & 0 \\
0 & \frac{1}{10}
\end{array}\right]\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
-2 & -1 & 0 & 1 & 2
\end{array}\right]\left[\begin{array}{c}
4 \\
2 \\
-1 \\
0 \\
0
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{1}{5} & 0 \\
0 & \frac{1}{10}
\end{array}\right]\left[\begin{array}{c}
5 \\
-8
\end{array}\right] \\
& =\left[\begin{array}{c}
1 \\
-\frac{4}{5}
\end{array}\right]
\end{aligned}
$$

Therefore, the best-fit line for the data is

$$
1-\frac{4}{5} t
$$

Here are the data points and the best-fit line on the same graph:

4. Problem 3.3.24. Find the best straight-line fit to the following measurements, and sketch your solution:

$$
\begin{aligned}
& y=2 \text { at } t=-1, y=0 \text { at } t=0, \\
& y=-3 \text { at } t=1, y=-5 \text { at } t=2 .
\end{aligned}
$$

Answer: As in Problem 3, if the data actually lay on a straight line $y=C+D t$, we would have

$$
\left[\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
C \\
D
\end{array}\right]=\left[\begin{array}{c}
2 \\
0 \\
-3 \\
-5
\end{array}\right]
$$

Again, this system is not solvable, but, if A is the matrix and \vec{b} is the vector on the right-hand side, then we want to find \widehat{x} such that $A \widehat{x}$ is as close as possible to \vec{b}. This will happen when

$$
\widehat{x}=\left(A^{T} A\right)^{-1} A^{T} \vec{b} .
$$

Now,

$$
A^{T} A=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 0 & 1 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
4 & 2 \\
2 & 6
\end{array}\right]
$$

To find $\left(A^{T} A\right)^{-1}$, we want to perform row operations on the augmented matrix

$$
\left[\begin{array}{llll}
4 & 2 & & 1 \\
2 & 0 \\
2 & 6 & 0 & 1
\end{array}\right]
$$

so that the 2×2 identity matrix appears on the left. To that end, scale the first row by $\frac{1}{4}$ and subtract 2 times the result from row 2 :

$$
\left[\begin{array}{cccc}
1 & 1 / 2 & 1 / 4 & 0 \\
0 & 5 & -1 / 2 & 1
\end{array}\right] .
$$

Now, scale row 2 by $\frac{1}{5}$ and subtract half the result from row 1 :

$$
\left[\begin{array}{cccc}
1 & 0 & 3 / 10 & -1 / 10 \\
0 & 1 & -1 / 10 & 1 / 5
\end{array}\right] .
$$

Therefore,

$$
\left(A^{T} A\right)^{-1}=\left[\begin{array}{cc}
3 / 10 & -1 / 10 \\
-1 / 10 & 1 / 5
\end{array}\right]
$$

and so

$$
\begin{aligned}
\widehat{x} & =\left(A^{T} A\right)^{-1} A^{T} \vec{b} \\
& =\left[\begin{array}{cc}
3 / 10 & -1 / 10 \\
-1 / 10 & 1 / 5
\end{array}\right]\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 0 & 1 & 2
\end{array}\right]\left[\begin{array}{c}
2 \\
0 \\
-3 \\
-5
\end{array}\right] \\
& =\left[\begin{array}{cc}
3 / 10 & -1 / 10 \\
-1 / 10 & 1 / 5
\end{array}\right]\left[\begin{array}{c}
-6 \\
-15
\end{array}\right] \\
& =\left[\begin{array}{c}
-3 / 10 \\
-12 / 5
\end{array}\right]
\end{aligned}
$$

Therefore, the best-fit line for the data is

$$
y=-\frac{3}{10}-\frac{12}{5} t
$$

Here's a plot of both the data and the best-fit line:

5. Problem 3.3.25. Suppose that instead of a straight line, we fit the data in Problem 24 (i.e $\# 3$ above) by a parabola $y=C+D t+E t^{2}$. In the inconsistent system $A \vec{x}=\vec{b}$ that comes from the four measurements, what are the coefficient matrix A, the unknown vector \vec{x}, and the data vector \vec{b} ? For extra credit, actually determine the best-fit parabola.
Answer: Since the data hasn't changed, the data vector \vec{b} will be the same as in the previous problem. If the data were to lie on a parabola $C+D t+E t^{2}$, then we would have that

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
C \\
D \\
E
\end{array}\right]=\left[\begin{array}{c}
2 \\
0 \\
-3 \\
-5
\end{array}\right]
$$

so A is the matrix above and \vec{x} is the vector next to A on the left-hand side.
To actually determine the best-fit parabola, we just need to find \widehat{x} such that $A \widehat{x}$ is as close as possible to \vec{b}. This will be the vector

$$
\widehat{x}=\left(A^{T} A\right)^{-1} A^{T} \vec{b}
$$

Now,

$$
A^{T} A=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 0 & 1 & 2 \\
1 & 0 & 1 & 4
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 2 & 4
\end{array}\right]=\left[\begin{array}{ccc}
4 & 2 & 6 \\
2 & 6 & 8 \\
6 & 8 & 18
\end{array}\right]
$$

To find $\left(A^{T} A\right)^{-1}$, we want to use row operations to convert the left-hand side of this augmented matrix to I :

$$
\left[\begin{array}{cccccc}
4 & 2 & 6 & & 1 & 0 \\
0 \\
2 & 6 & 8 & & 0 & 1 \\
\hline 6 & 8 & 18 & & 0 & 0
\end{array}\right] .
$$

First, scale row 1 by $\frac{1}{4}$ and subtract twice the result from row 2 and six times the result from row 3:

$$
\left[\begin{array}{cccccc}
1 & 1 / 2 & 3 / 2 & 1 / 4 & 0 & 0 \\
0 & 5 & 5 & -1 / 2 & 1 & 0 \\
0 & 5 & 9 & -3 / 2 & 0 & 1
\end{array}\right]
$$

Next, subtract row 2 from row 3 , scale row 2 by $\frac{1}{5}$ and subtract half the result from row 1 :

$$
\left[\begin{array}{cccccc}
1 & 0 & 1 & 3 / 10 & -1 / 10 & 0 \\
0 & 1 & 1 & -1 / 10 & 1 / 5 & 0 \\
0 & 0 & 4 & -1 & -1 & 1
\end{array}\right] .
$$

Finally, scale row 3 by $\frac{1}{4}$ and subtract the result from rows 1 and 2 :

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & 11 / 20 & 3 / 20 & -1 / 4 \\
0 & 1 & 0 & 3 / 20 & 9 / 20 & -1 / 4 \\
0 & 0 & 1 & -1 / 4 & -1 / 4 & 1 / 4
\end{array}\right] .
$$

Therefore,

$$
\left(A^{T} A\right)^{-1}=\left[\begin{array}{ccc}
11 / 20 & 3 / 20 & -1 / 4 \\
3 / 20 & 9 / 20 & -1 / 4 \\
-1 / 4 & -1 / 4 & 1 / 4
\end{array}\right]
$$

and so

$$
\begin{aligned}
\widehat{x} & =\left(A^{T} A\right)^{-1} A^{T} \vec{b} \\
& =\left[\begin{array}{ccc}
11 / 20 & 3 / 20 & -1 / 4 \\
3 / 20 & 9 / 20 & -1 / 4 \\
-1 / 4 & -1 / 4 & 1 / 4
\end{array}\right]\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 0 & 1 & 2 \\
1 & 0 & 1 & 4
\end{array}\right]\left[\begin{array}{c}
2 \\
0 \\
-3 \\
-5
\end{array}\right] \\
& =\left[\begin{array}{ccc}
11 / 20 & 3 / 20 & -1 / 4 \\
3 / 20 & 9 / 20 & -1 / 4 \\
-1 / 4 & -1 / 4 & 1 / 4
\end{array}\right]\left[\begin{array}{c}
-6 \\
-15 \\
-21
\end{array}\right] \\
& =\left[\begin{array}{c}
-3 / 10 \\
-12 / 5 \\
0
\end{array}\right] .
\end{aligned}
$$

Thus, the best-fit parabola is

$$
y=-\frac{3}{10}-\frac{12}{5} t+0 t^{2}=-\frac{3}{10}-\frac{12}{5} t
$$

which is the same as the best-fit line!
6. Problem 3.4.4. If Q_{1} and Q_{2} are orthogonal matrices, so that $Q^{T} Q=I$, show that $Q_{1} Q_{2}$ is also orthogonal. If Q_{1} is rotation through θ and Q_{2} is rotation through ϕ, what is $Q_{1} Q_{2}$? Can you find the trigonometric identities for $\sin (\theta+\phi)$ and $\cos (\theta+\phi)$ in the matrix multiplication $Q_{1} Q_{2}$?
Answer: Note that

$$
\left(Q_{1} Q_{2}\right)^{T}\left(Q_{1} Q_{2}\right)=Q_{2}^{T} Q_{1}^{T} Q_{1} Q_{2}=Q_{2}^{T} I Q_{2}=Q_{2}^{T} Q_{2}=I,
$$

since both Q_{1} and Q_{2} are orthogonal matrices. Therefore, the columns of $Q_{1} Q_{2}$ are orthonormal. Moreover, since both Q_{1} and Q_{2} are square and must be the same size for $Q_{1} Q_{2}$ to make sense, it must be the case that $Q_{1} Q_{2}$ is square. Therefore, since $Q_{1} Q_{2}$ is square and has orthonormal columns, it is an orthogonal matrix.
If Q_{1} is rotation through and angle θ, then, as we've seen,

$$
Q_{1}=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] .
$$

Likewise, if Q_{2} is rotation through and angle ϕ, then

$$
Q_{2}=\left[\begin{array}{cc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right] .
$$

With these choices of Q_{1} and Q_{2}, if \vec{x} is any vector in the plane \mathbb{R}^{2}, we see that

$$
Q_{1} Q_{2} \vec{x}=Q_{1}\left(Q_{2} \vec{x}\right)
$$

meaning that \vec{x} is first rotated by an angle ϕ, then the result is rotated by angle θ. Of course, this is the same as rotating \vec{x} by an angle $\theta+\phi$, so $Q_{1} Q_{2}$ is precisely the matrix of the transformation which rotates the plane through an angle of $\theta+\phi$. On the one hand, we know that
$Q_{1} Q_{2}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{cc}\cos \phi & \sin \phi \\ -\sin \phi & \cos \phi\end{array}\right]=\left[\begin{array}{cc}\cos \theta \cos \phi-\sin \theta \sin \phi & \cos \theta \sin \phi+\sin \theta \cos \phi \\ -\sin \theta \cos \phi-\cos \theta \sin \phi & -\sin \theta \sin \phi+\cos \theta \cos \phi\end{array}\right]$.
On the other hand, the matrix which rotates the plane through an angle of $\theta+\phi$ is precisely

$$
\left[\begin{array}{cc}
\cos (\theta+\phi) & \sin (\theta+\phi) \\
-\sin (\theta+\phi) & \cos (\theta+\phi)
\end{array}\right] .
$$

Hence, it must be the case that

$$
\left[\begin{array}{cc}
\cos (\theta+\phi) & \sin (\theta+\phi) \\
-\sin (\theta+\phi) & \cos (\theta+\phi)
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta \cos \phi-\sin \theta \sin \phi & \cos \theta \sin \phi+\sin \theta \cos \phi \\
-\sin \theta \cos \phi-\cos \theta \sin \phi & -\sin \theta \sin \phi+\cos \theta \cos \phi
\end{array}\right] .
$$

This implies the following trigonometric identities:

$$
\begin{aligned}
\cos (\theta+\phi) & =\cos \theta \cos \phi-\sin \theta \sin \phi \\
\sin (\theta+\phi) & =\cos \theta \sin \phi+\sin \theta \cos \phi
\end{aligned}
$$

7. Problem 3.4.6. Find a third column so that the matrix

$$
Q=\left[\begin{array}{cc}
1 / \sqrt{3} & 1 / \sqrt{14} \\
1 / \sqrt{3} & 2 / \sqrt{14} \\
1 / \sqrt{3} & -3 / \sqrt{14}
\end{array}\right]
$$

is orthogonal. It must be a unit vector that is orthogonal to the other columns; how much freedom does this leave? Verify that the rows automatically become orthonormal at the same time.
Answer: Let $\vec{q}_{1}=\left[\begin{array}{c}1 / \sqrt{3} \\ 1 / \sqrt{3} \\ 1 / \sqrt{3}\end{array}\right]$ and $\vec{q}_{2}=\left[\begin{array}{c}1 / \sqrt{14} \\ 2 / \sqrt{14} \\ -3 / \sqrt{14}\end{array}\right]$. If $\vec{q}_{3}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ such that $\left\|\vec{q}_{3}\right\|=1$, $\left\langle\vec{q}_{1}, \vec{q}_{3}\right\rangle=0$ and $\left\langle\vec{q}_{2}, \vec{q}_{3}\right\rangle=0$ then we have that

$$
\begin{aligned}
& 1=\left\|\vec{q}_{3}\right\|^{2}=\left\langle\vec{q}_{3}, \vec{q}_{3}\right\rangle=a^{2}+b^{2}+c^{2} \\
& 0=\left\langle\vec{q}_{1}, \vec{q}_{3}\right\rangle=a / \sqrt{3}+b / \sqrt{3}+c / \sqrt{3} \\
& 0=\left\langle\vec{q}_{2}, \vec{q}_{3}\right\rangle=a / \sqrt{14}+2 b / \sqrt{14}-3 c / \sqrt{14} .
\end{aligned}
$$

Multiplying the second line by $\sqrt{3}$ and the third line by $\sqrt{14}$, we get the equivalent system

$$
\begin{aligned}
& 1=a^{2}+b^{2}+c^{2} \\
& 0=a+b+c \\
& 0=a+2 b-3 c
\end{aligned}
$$

From the second line we have that $b=-a-c$ and so, from the third line,

$$
a=-2 b+3 c=-2(-a-c)+3 c=2 a+5 c .
$$

Thus $a=-5 c$, meaning that $b=-a-c=-(-5 c)-c=4 c$. Therefore

$$
1=a^{2}+b^{2}+c^{2}=(-5 c)^{2}+(4 c)^{2}+c^{2}=42 c^{2}
$$

meaning that $c= \pm 1 / \sqrt{42}$. Thus, we see that

$$
\vec{q}_{3}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
-5 c \\
4 c \\
c
\end{array}\right]= \pm\left[\begin{array}{c}
-5 / \sqrt{42} \\
4 / \sqrt{42} \\
1 / \sqrt{42}
\end{array}\right]
$$

Therefore, there are two possible choices; one of them gives the following orthogonal matrix:

$$
Q=\left[\begin{array}{ccc}
1 / \sqrt{3} & 1 / \sqrt{14} & -5 / \sqrt{42} \\
1 / \sqrt{3} & 2 / \sqrt{14} & 4 / \sqrt{42} \\
1 / \sqrt{3} & -3 / \sqrt{14} & 1 / \sqrt{42}
\end{array}\right]
$$

It is straightforward to check that each row has length 1 and is perpendicular to the other rows.
8. Problem 3.4.12. What multiple of $\vec{a}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ should be subtracted from $\vec{a}_{2}=\left[\begin{array}{l}4 \\ 0\end{array}\right]$ to make the result orthogonal to \vec{a}_{1} ? Factor $\left[\begin{array}{ll}1 & 4 \\ 1 & 0\end{array}\right]$ into $Q R$ with orthonormal vectors in Q.
Answer: Let's do Gram-Schmidt on $\left\{\vec{a}_{1}, \vec{a}_{2}\right\}$. First, we let

$$
\vec{v}_{1}=\frac{\vec{a}_{1}}{\left\|\vec{a}_{1}\right\|}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right] .
$$

Next,

$$
\vec{w}_{2}=\vec{a}_{2}-\left\langle\vec{v}_{1}, \vec{a}_{2}\right\rangle \vec{v}_{1}=\left[\begin{array}{l}
4 \\
0
\end{array}\right]-4 / \sqrt{2}\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]=\left[\begin{array}{l}
4 \\
0
\end{array}\right]-\left[\begin{array}{l}
2 \\
2
\end{array}\right]=\left[\begin{array}{c}
2 \\
-2
\end{array}\right] .
$$

By construction, \vec{w}_{2} is orthogonal to \vec{a}_{1}, so we see that we needed to subtract 2 times \vec{a}_{1} from \vec{a}_{2} to get a vector perpendicular to \vec{a}_{1}.
Now, continuing with Gram-Schmidt, we get that

$$
\vec{v}_{2}=\frac{\vec{w}_{2}}{\left\|\vec{w}_{2}\right\|}=\frac{1}{2 \sqrt{2}}\left[\begin{array}{c}
2 \\
-2
\end{array}\right]=\left[\begin{array}{c}
1 / \sqrt{2} \\
-1 / \sqrt{2}
\end{array}\right] .
$$

Therefore, if $A=\left[\begin{array}{ll}\vec{a}_{1} & \vec{a}_{2}\end{array}\right]$ and $Q=\left[\begin{array}{ll}\vec{v}_{1} & \vec{v}_{2}\end{array}\right]$, then

$$
A=Q R
$$

where

$$
R=\left[\begin{array}{cc}
\left\langle\vec{a}_{1}, \vec{v}_{1}\right\rangle & \left\langle\vec{a}_{2}, \vec{v}_{1}\right\rangle \\
0 & \left\langle\vec{a}_{2}, \vec{v}_{2}\right\rangle
\end{array}\right]=\left[\begin{array}{cc}
\sqrt{2} & 2 \sqrt{2} \\
0 & 2 \sqrt{2}
\end{array}\right] .
$$

9. Problem 3.4.18. If $A=Q R$, find a simple formula for the projection matrix P onto the column space of A.
Answer: If $A=Q R$, then

$$
A^{T} A=(Q R)^{T}(Q R)=R^{T} Q^{T} Q R=R^{T} I R=R^{T} R
$$

since Q is an orthogonal matrix (meaning $Q^{T} Q=I$). Thus, the projection matrix P onto the column space of A is given by

$$
P=A\left(A^{T} A\right)^{-1} A^{T}=Q R\left(R^{T} R\right)^{-1}(Q R)^{T}=Q R R^{-1}\left(R^{T}\right)^{-1} R^{T} Q^{T}=Q Q^{T}
$$

(provided, of course, that R is invertible).
10. Problem 3.4.32.
(a) Find a basis for the subspace \mathbf{S} in \mathbb{R}^{4} spanned by all solutions of

$$
x_{1}+x_{2}+x_{3}-x_{4}=0 .
$$

Answer: The solutions of the given equation are, equivalently, solutions of the matrix equation

$$
\left[\begin{array}{llll}
1 & 1 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=0
$$

so \mathbf{S} is the nullspace of the 1×4 matrix $A=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$. Since A is already in reduced echelon form, we can read off that the solutions to the above matrix equation are the vectors of the form

$$
x_{2}\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right] .
$$

Therefore, a basis for $\operatorname{nul}(A)=\mathbf{S}$ is given by

$$
\left\{\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

(b) Find a basis for the orthogonal complement \mathbf{S}^{\perp}.

Answer: Since $\mathbf{S}=\operatorname{nul}(A)$, it must be the case that \mathbf{S}^{\perp} is the row space of A. Hence, the one row of A gives a basis for \mathbf{S}^{\perp}, meaning that the following is a basis for \mathbf{S}^{\perp} :

$$
\left\{\left[\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right]\right\}
$$

(c) Find \vec{b}_{1} in \mathbf{S} and \vec{b}_{2} in \mathbf{S}^{\perp} so that $\vec{b}_{1}+\vec{b}_{2}=\vec{b}=(1,1,1,1)$.

Answer: For any $\vec{b}_{1} \in \mathbf{S}$, we know that \vec{b}_{1} is a linear combination of elements of the basis for \mathbf{S} that we found in part (a). In other words,

$$
\vec{b}_{1}=a\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]+b\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right]+c\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]
$$

for some choice of $a, b, c \in \mathbb{R}$. Also, if $\vec{b}_{2} \in \mathbf{S}^{\perp}$, then \vec{b}_{2} is a multiple of the basis vector for \mathbf{S}^{\perp} we found in part (b). Thus,

$$
\vec{b}_{2}=d\left[\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right]
$$

for some $d \in \mathbb{R}$. Therefore,

$$
\vec{b}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=a\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]+b\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right]+c\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]+d\left[\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right]
$$

or, equivalently,

$$
\left[\begin{array}{cccc}
-1 & -1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] .
$$

To solve this matrix equation, we just do elimination on the augmented matrix

$$
\left[\begin{array}{ccccc}
-1 & -1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & -1 & 1
\end{array}\right]
$$

Add row 1 to row 2:

$$
\left[\begin{array}{ccccc}
-1 & -1 & 1 & 1 & 1 \\
0 & -1 & 1 & 2 & 2 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & -1 & 1
\end{array}\right] .
$$

Next, add row 2 to row 3 :

$$
\left[\begin{array}{ccccc}
-1 & -1 & 1 & 1 & 1 \\
0 & -1 & 1 & 2 & 2 \\
0 & 0 & 1 & 3 & 3 \\
0 & 0 & 1 & -1 & 1
\end{array}\right] .
$$

Finally, subtract row 3 from row 4:

$$
\left[\begin{array}{ccccc}
-1 & -1 & 1 & 1 & 1 \\
0 & -1 & 1 & 2 & 2 \\
0 & 0 & 1 & 3 & 3 \\
0 & 0 & 0 & -4 & -2
\end{array}\right]
$$

Therefore, $-4 d=-2$, so $d=\frac{1}{2}$. Hence,

$$
3=c+3 d=c+\frac{3}{2},
$$

so $c=\frac{3}{2}$. In turn,

$$
2=-b+c+2 d=-b+\frac{3}{2}+1=-b+\frac{5}{2},
$$

meaning $b=\frac{1}{2}$. Finally,

$$
1=-a-b+c+d=-a-\frac{1}{2}+\frac{3}{2}+\frac{1}{2}=-a+\frac{3}{2},
$$

so $a=-\frac{1}{2}$.
Therefore,

$$
\vec{b}_{1}=-\frac{1}{2}\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]+\frac{1}{2}\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right]+\frac{3}{2}\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
3 / 2 \\
-1 / 2 \\
1 / 2 \\
3 / 2
\end{array}\right]
$$

and

$$
\vec{b}_{2}=\frac{1}{2}\left[\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
1 / 2 \\
1 / 2 \\
1 / 2 \\
-1 / 2
\end{array}\right]
$$

11. (Bonus Problem) Problem 3.4.24. Find the fourth Legendre polynomial. It is a cubic $x^{3}+a x^{2}+b x+c$ that is orthogonal to $1, x$, and $x^{2}-\frac{1}{3}$ over the interval $-1 \leq x \leq 1$.
Answer: We can find the fourth Legendre polynomial in the same style as Strang finds the third Legendre polynomial on p. 185:

$$
\begin{equation*}
v_{4}=x^{3}-\frac{\left\langle 1, x^{3}\right\rangle}{\langle 1,1\rangle} 1-\frac{\left\langle x, x^{3}\right\rangle}{\langle x, x\rangle} x-\frac{\left\langle x^{2}-\frac{1}{3}, x^{3}\right\rangle}{\left\langle x^{2}-\frac{1}{3}, x^{2}-\frac{1}{3}\right\rangle}\left(x^{2}-\frac{1}{3}\right) . \tag{1}
\end{equation*}
$$

Now, we just compute each of the inner products in turn:

$$
\begin{aligned}
\left\langle 1, x^{3}\right\rangle & =\int_{-1}^{1} x^{3} d x=0 \\
\langle 1,1\rangle & =\int_{-1}^{1} 1 d x=2 \\
\left\langle x, x^{3}\right\rangle & =\int_{-1}^{1} x^{4} d x=\frac{2}{5} \\
\langle x, x\rangle & =\int_{-1}^{1} x^{2} d x=\frac{2}{3} \\
\left\langle x^{2}-\frac{1}{3}, x^{3}\right\rangle & =\int_{-1}^{1}\left(x^{5}-\frac{x^{3}}{3}\right) d x=0 \\
\left\langle x^{2}-\frac{1}{3}, x^{2}-\frac{1}{3}\right\rangle & =\int_{-1}^{1}\left(x^{2}-\frac{1}{3}\right)^{2} d x=\frac{8}{45}
\end{aligned}
$$

Therefore, (1) becomes

$$
v_{4}=x^{3}-0 \cdot 1-\frac{2 / 5}{2 / 3} x-0 \cdot\left(x^{2}-\frac{1}{3}\right)=x^{3}-\frac{3}{5} x .
$$

Therefore, the fourth Legendre polynomial is $x^{3}-\frac{3}{5} x$.

