
Math 215 HW #2 Solutions

1. Problem 1.4.6. Write down the 2 by 2 matrices A and B that have entries aij = i + j and
bij = (−1)i+j . Multiply them to find AB and BA.

Solution: Since aij indicates the entry in A which is in the ith row and in the jth column,
we see that

A =
[

2 3
3 4

]
.

Likewise,

B =
[

1 −1
−1 1

]
.

Therefore,

AB =
[

2 3
3 4

] [
1 −1
−1 1

]
=

[
2 · 1 + 3 · (−1) 2 · (−1) + 3 · 1
3 · 1 + 4 · (−1) 3 · (−1) + 4 · 1

]
=

[
−1 1
−1 1

]
.

Also,

BA =
[

1 −1
−1 1

] [
2 3
3 4

]
=

[
1 · 2 + (−1) · 3 1 · 3 + (−1) · 4
(−1) · 2 + 1 · 3 (−1) · 3 + 1 · 4

]
=

[
−1 −1
1 1

]
.

2. Problem 1.4.16. Let x be the column vector (1, 0, . . . , 0). Show that the rule (AB)x = A(Bx)
forces the first column of AB to equal A times the first column of B.

Solution: Suppose that x has n components. Then, in order for Bx to make sense, B must
be an m× n matrix for some m. In turn, for the matrix product AB to make sense, A must
be an `×m matrix for some `.

Now, suppose

A =

 a11 · · · a1m
...

...
a`1 · · · a`m


and

B =

 b11 · · · b1n
...

...
bm1 · · · bmn

 .

Then

AB =

 a11 · · · a1m
...

...
a`1 · · · a`m


 b11 · · · b1n

...
...

bm1 · · · bmn

 =


∑m

i=1 a1ibi1] · · ·
∑m

i=1 a1ibin
...

...∑m
i=1 a`ibi1 · · ·

∑m
i=1 a`ibin

 .

Hence,

(AB)x =


∑m

i=1 a1ibi1] · · ·
∑m

i=1 a1ibin
...

...∑m
i=1 a`ibi1 · · ·

∑m
i=1 a`ibin




1
0
...
0

 =


∑m

i=1 a1ibi1∑m
i=1 a2ibi1

...∑m
i=1 a`ibi1

 ,
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which is just a copy of the first column of AB.

On the other hand,

Bx =

 b11 · · · b1n
...

...
bm1 · · · bmn




1
0
...
0

 =


b11

b21
...

bm1

 ,

which is the first column of B. Therefore, A(Bx) is A times the first column of B; since
A(Bx) = (AB)x and (AB)x is the first column of AB, we see that the first column of AB
must be A times the first column of B.

Though it’s not part of the assigned problem, the same argument with different choices of x
(e.g. (0, 1, 0, . . . , 0), etc.) will demonstrate that each column of AB must be equal to A times
the corresponding column in B.

3. Problem 1.4.20. The matrix that rotates the xy-plane by an angle θ is

A(θ) =
[

cos θ − sin θ
sin θ cos θ

]
.

Verify that A(θ1)A(θ2) = A(θ1 + θ2) from the identities for cos(θ1 + θ2) and sin(θ1 + θ2).
What is A(θ) times A(−θ)?

Solution: Using the definition of A(θ1) and A(θ2), we have that

A(θ1)A(θ2) =
[

cos θ1 − sin θ1

sin θ1 cos θ1

] [
cos θ2 − sin θ2

sin θ2 cos θ2

]
=

[
cos θ1 cos θ2 − sin θ1 sin θ2 − cos θ1 sin θ2 − sin θ1 cos θ2

sin θ1 cos θ2 + cos θ1 sin θ2 − sin θ1 sin θ2 + cos θ1 cos θ2

]
=

[
cos(θ1 + θ2) − sin(θ1 + θ2)
sin(θ1 + θ2) cos(θ1 + θ2)

]
= A(θ1 + θ2),

where I went from the second to the third lines using the identities for cos(θ1 + θ2) and
sin(θ1 + θ2). Geometrically, the fact that A(θ1)A(θ2) = A(θ1 + θ1) corresponds to the fact
that rotating something by an angle of θ2 and then rotating the result by an angle of θ1 is
the same as rotating the original object by an angle of θ1 + θ2.

Now, letting θ1 = θ and θ2 = −θ, the above implies that

A(θ)A(−θ) = A(θ + (−θ)) = A(0) =
[

1 0
0 1

]
.

This corresponds to intuition: rotating something clockwise through some angle and then
rotating counterclockwise through the same angle has the same end result as not moving the
object at all.

4. Problem 1.4.32. Write these ancient problems in a 2 by 2 matrix form Ax = b and solve
them:
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(a) X is twice as old as Y and their ages add to 39.
Solution: We can interpret this problem as the following system of equations:

X = 2Y

X + Y = 39

or, equivalently,

X − 2Y = 0
X + Y = 39.

Define the matrix

A =
[

1 −2
1 1

]
;

then it’s clear that the following matrix equation of the form Ax = b is equivalent to the
given problem: [

1 −2
1 1

] [
X
Y

]
=

[
0
39

]
.

Subtracting the first row from the second yields the equation[
1 −2
0 3

] [
X
Y

]
=

[
0
39

]
,

which we can now solve by back-substitution. Clearly, 3Y = 39, so Y = 13. Hence,

0 = X − 2Y = X − 26,

so X = 26. Thus, X is 26 years old and Y is 13 years old.

(b) (x, y) = (2, 5) and (3, 7) lie on the line y = mx + c. Find m and c.
Solution: Since the two given points lie on the line, we have that

2m + c = 5
3m + c = 7.

Therefore, we can re-interpret the problem in terms of solving the following matrix
equation: [

2 1
3 1

] [
m
c

]
=

[
5
7

]
.

Subtracting 3
2 times the first row from the second row yields[

2 1
0 −1

2

] [
m
c

]
=

[
5
−1

2

]
.

Hence,

−1
2
c = −1

2
,
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meaning that c = 1. In turn, we have that

5 = 2m + c = 2m + 1,

so m = 2. Therefore, the given points lie on the line

y = 2x + 1.

5. Problem 1.4.56. What 2 by 2 matrix P1 projects the vector (x, y) onto the x-axis to produce
(x, 0)? What matrix P2 projects onto the y-axis to produce (0, y)? If you multiply (5, 7) by
P1 and then multiply by P2, you get ( ) and ( ).

Solution: Just to give the components of P1 names, suppose

P1 =
[

p11 p12

p21 p22

]
.

Then P1 times (x, y) is given by[
p11 p12

p21 p22

] [
x
y

]
=

[
p11x + p12y
p21x + p22y

]
.

Since this is supposed to equal (x, 0), we see that

p11x + p12y = x

p21x + p22y = 0.

Therefore, since the above equations must hold for any possible values of x and y, it must be
the case that p11 = 1, p12 = 0, p21 = 0, and p22 = 0. Therefore,

P1 =
[

1 0
0 0

]
.

On the other hand, suppose

P2 =
[

q11 q12

q21 q22

]
.

Then P2 times (x, y) is [
q11 q12

q21 q22

] [
x
y

]
=

[
q11x + q12y
q21x + q22y

]
.

Since this is supposed to equal (0, y), we see that

q11x + q12y = 0
q21x + q22y = y.

Again, since these equations must hold for any possible choices of x and y, we see that
q11 = q12 = q21 = 0 and q22 = 1. Therefore,

P2 =
[

0 0
0 1

]
.
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Now, multiply (5, 7) by P1: [
1 0
0 0

] [
5
7

]
=

[
5
0

]
.

Multiplying this, in turn, by P2 yields[
0 0
0 1

] [
5
0

]
=

[
0
0

]
.

This, of course, makes perfect sense, as projecting (5, 7) sequentially to the x-axis (multiplying
by P1) and then to the y-axis (multiplying by P2) will of course yield the zero vector.

6. Problem 1.5.4. Apply elimination to produce the factors L and U for

A =
[

2 1
8 7

]
and A =

 3 1 1
1 3 1
1 1 3

 and A =

 1 1 1
1 4 4
1 4 8

 .

Solution: For the first A, we get U by subtracting 4 times row 1 from row 2:

U =
[

2 1
0 3

]
and the row operation is recorded by the matrix L:

L =
[

1 0
4 1

]
.

For the second A, the first steps in elimination are to subtract 1/3 of row 1 from rows 2 and
3, yielding  3 1 1

0 8
3

2
3

0 2
3

8
3

 .

The last step, then, is to subtract 1/4 of row 2 from row 3, yielding

U =

 3 1 1
0 8

3
2
3

0 0 15
6

 .

These three row operations are recorded in the matrix L:

L =

 1 0 0
1
3 1 0
1
3

1
4 1

 .

For the third A, the first steps in elimination are to subtract the first row from the second
and third rows, yielding  1 1 1

0 3 3
0 3 7

 .
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Next, subtract the second row from the third to get

U =

 1 1 1
0 3 3
0 0 4

 .

The elimination steps are recorded by L:

L =

 1 0 0
1 1 0
1 1 1

 .

7. Problem 1.5.18. Decide whether the following systems are singular or nonsingular, and
whether they have no solution, one solution, or infinitely many solutions:

v − w = 2
u − v = 2
u − w = 2

and
v − w = 0

u − v = 0
u − w = 0

and
v + w = 1

u + v = 1
u + w = 1

Solution: Let

A =

 0 1 −1
1 −1 0
1 0 −1

 .

A is a matrix which records the left sides of the first two systems of equations.

Then, in order to do elimination on A, first switch rows 1 and 2 to get 1 −1 0
0 1 −1
1 0 −1

 .

Next, subtract row 1 from row 3 to get 1 −1 0
0 1 −1
0 1 −1

 .

Finally, subtract row 2 from row 3 to get 1 −1 0
0 1 −1
0 0 0

 .

Since the bottom row is zero, we see that the matrix A is singular (and, thus, the first two

systems of equations are singular). Applying the same row operations to the vector

 2
2
2

,

which represents the right-hand side of the first system, yields 2
2
−2

 .
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Therefore, the first system is equivalent to the matrix equation 1 −1 0
0 1 −1
0 0 0

 u
v
w

 =

 2
2
−2

 ,

which implies that 0 = −2. Since this is clearly impossible, the first system is inconsistent
and has no solutions.

On the other hand, applying the above row operations to

 0
0
0

 doesn’t change it, so the

second system is equivalent to the matrix equation 1 −1 0
0 1 −1
0 0 0

 u
v
w

 =

 0
0
0

 ,

which has infinitely many solutions.

Turning to the third system of equations, let

A =

 0 1 1
1 1 0
1 0 1

 .

Then the first elimination step is to switch the first and second rows, yielding 1 1 0
0 1 1
1 0 1

 . (∗)

This row switch is recorded by the permutation matrix

P =

 0 1 0
1 0 0
0 0 1

 .

Getting back to (∗), the next elimination step is to subtract row 1 from row 3: 1 1 0
0 1 1
0 −1 1

 .

Finally, adding row 2 to row 3 yields

U =

 1 1 0
0 1 1
0 0 2

 .

Note that this implies that the original matrix A (and, thus, the third system of equations)
was nonsingular, so we should expect a unique solution.
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These row operations are recorded by the matrix

L =

 1 0 0
0 1 0
1 −1 1

 .

Then, with A, P , U , and L as above,

PA = LU.

Now, to solve the corresponding system of equations, note that the right hand side is unaf-
fected by the permutation matrix P . Hence, Lc = Pb is just the equation 1 0 0

0 1 0
1 −1 1

 c1

c2

c3

 =

 1
1
1

 .

Hence, c1 = 1 and c2 = 1. In turn, the bottom row yields

1 = c1 − c2 + c3 = 1− 1 + c3,

so c3 = 1.

Thus, solving Ux = c for x means solving 1 1 0
0 1 1
0 0 2

 u
v
w

 =

 1
1
1

 .

We see that 2w = 1, so w = 1/2. In turn,

1 = v + w = v + 1/2,

so v = 1/2. Finally,
1 = u + v = u + 1/2,

so u = 1/2. Therefore, the unique solution to the third system of equations is

(u, v, w) = (1/2, 1/2, 1/2).

8. Problem 1.5.24. What three elimination matrices E21, E31, E32 put A into upper triangular
form E32E31E21A = U? Multiply by E−1

32 , E−1
31 , and E−1

21 to factor A into LU where L =
E−1

21 E−1
31 E−1

32 . Find L and U :

A =

 1 0 1
2 2 2
3 4 5

 .

Solution: The first two elimination steps are to subtract 2 times row 1 from row 2 and to
subtract 3 times row 1 from row 3, yielding: 1 0 1

0 2 0
0 4 −1

 . (†)
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These two steps correspond to the matrices

E21 =

 1 0 0
−2 1 0
0 0 1


and

E31 =

 1 0 0
0 1 0
−3 0 1

 .

Getting back to (†), the final elimination step is to subtract twice row 2 from row 3, yielding

U =

 1 0 1
0 2 0
0 0 −1

 .

This elimination step corresponds to the matrix

E32 =

 1 0 0
0 1 0
0 −2 1

 ,

and it’s easy to check that, with A, U , E21, E31, and E32 as described,

E32E31E21A = U.

The action of E21 is undone by adding twice row 1 to row 2, so

E−1
21 =

 1 0 0
2 1 0
0 0 1

 .

Likewise, the action of E31 is undone by adding three times row 2 to row 3 and the action of
E32 is undone by adding twice row 2 to row 3, so

E−1
31 =

 1 0 0
0 1 0
3 0 1

 and E−1
32 =

 1 0 0
0 1 0
0 2 1

 .

Thus,

L = E−1
21 E−1

31 E−1
32 =

 1 0 0
2 1 0
0 0 1

 1 0 0
0 1 0
3 0 1

 1 0 0
0 1 0
0 −2 1

 =

 1 0 0
2 1 0
3 2 1

 .

9. Problem 1.5.30. Find L and U for the nonsymmetric matrix

A =


a r r r
a b s s
a b c t
a b c d

 .
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Find the four conditions on a, b, c, d, r, s, t to get A = LU with four pivots.

Solution: Provided a 6= 0, the first elimination steps are to subtract row 1 from rows 2, 3,
and 4: 

a r r r
0 b − r s − r s− r
0 b − r c − r t − r
0 b − r c − r d − r

 .

Provided b− r 6= 0, we have a good pivot in the second row and we can subtract row 2 from
rows 3 and 4:

a r r r
0 b − r s− r s− r
0 0 (c− r)− (s− r) (t − r)− (s− r)
0 0 (c− r)− (s− r) (d − r)− (s− r)

 =


a r r r
0 b − r s− r s− r
0 0 c− s t− s
0 0 c− s d − s

 .

Provided c − s 6= 0, we have a good pivot in the third row and we can subtract row 3 from
row 4 to get

U =


a r r r
0 b − r s − r s− r
0 0 c− s t− s
0 0 0 (d − s)− (t − s)

 =


a r r r
0 b − r s− r s − r
0 0 c− s t − s
0 0 0 d − t

 .

So long as d − t 6= 0, this is a nonsingular matrix. The above row operations are encoded in
the matrix

L =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 .

Putting all this together, we see that A = LU with L and U as above under the conditions

a 6= 0, b 6= r, c 6= s, d 6= t.

10. Problem 1.5.42. If P1 and P2 are permutation matrices, so is P1P2. This still has the rows of
I in some order. Give examples with P1P2 6= P2P1 and P3P4 = P4P3.

Solution: Define P1 and P2 by

P1 =

 0 1 0
1 0 0
0 0 1

 and P2 =

 1 0 0
0 0 1
0 1 0

 .

In other words, P1 switches the first and second rows, while P2 switches the second and third
rows.

Then

P1P2 =

 0 1 0
1 0 0
0 0 1

 1 0 0
0 0 1
0 1 0

 =

 0 0 1
1 0 0
0 1 0

 .
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On the other hand

P2P1 =

 1 0 0
0 0 1
0 1 0

 0 1 0
1 0 0
0 0 1

 =

 0 1 0
0 0 1
1 0 0

 .

Hence, P1P2 6= P2P1. (Notice: we could have figured this out directly without actually
performing the matrix multiplication. P1P2 corresponds to applying P2, then applying P1.
Given that P2 switches rows 2 and 3 and that P1 switches rows 1 and 2, applying P2 and
then P1 corresponds to sending the first row to the second row, the second row to the third
row, and the third row to the first row. On the other hand, P2P1 corresponds to applying P1,
then P2, which sends the first row to the third row, the third row to the second row, and the
second row to the first row.)

Now, let P3 and P4 be given by

P3 =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 and P4 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

In other words, P3 switches the first two rows and P4 switches the last two rows. It’s clear
that the order that we apply P3 and P4 shouldn’t matter: switching rows 1 and 2 first and
then switching rows 3 and 4 yields the same final result as switching rows 3 and 4 first and
then switching rows 1 and 2. We can confirm this by performing the matrix multiplication:

P3P4 =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


and

P4P3 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,

so, indeed, P3P4 = P4P3.

(Note: the identity matrix is, technically, a permutation matrix, so the easy way out would
have been to choose, say, P3 = I; since the identity matrix commutes with everything, any
choice of P4 would have yielded P3P4 = P4P3.)
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