
Math 215 HW #10 Solutions

1. Problem 5.2.14. Suppose the eigenvector matrix S has ST = S−1. Show that A = SΛS−1 is
symmetric and has orthogonal eigenvectors.

Proof. Suppose S = [~v1 . . . ~vn], where ~vi are the eigenvectors of A. Then, since ST = S−1,
we know that

I = ST S =

—~vT
1 —
...

—~vT
n —


 | . . . |
~v1 . . . ~vn

| . . . |

 =

〈~v1, ~v1〉 . . . 〈~v1, ~vn〉
...

...
〈~vn, ~v1〉 . . . 〈~vn, ~vn〉

 ,

so we see that 〈~vi, ~vj〉 = 0 unless i = j; hence, the eigenvectors of A are orthogonal.

Also, again using the fact that ST = S−1, we know that

AT = (SΛS−1)T = (SΛST )T = (ST )T ΛT ST = SΛST = A

since ΛT = Λ and (ST )T = S, so we see that A is symmetric.

2. Problem 5.2.30. Find Λ and S to diagonalize A in Problem 29 (A =
[
.6 .4
.4 .6

]
). What is the

limit of Λk as k →∞? What is the limit of SΛkS−1? In the columns of this limit matrix you
see the .

Answer: To diagonalize A, we need to find the eigenvalues and eigenvectors of A. To that
end, we want to solve

0 = det(A− λI) =
∣∣∣∣.6− λ .4

.4 .6− λ

∣∣∣∣
= (.6− λ)2 − .42

= λ2 − 1.2λ + .2
= (λ− 1)(λ− .2),

so the eigenvalues of A are λ1 = 1 and λ2 = .2. The eigenvector associated to λ1 = 1 is the
generator of the nullspace of

A− I =
[
−.4 .4
.4 −.4

]
,

which row-reduces to
[
−.4 .4
0 0

]
, so the nullspace consists of multiples of ~v1 =

[
1
1

]
.

On the other hand, the eigenvector associated to λ2 = .2 is the generator of the nullspace of

A− .2I =
[
.4 .4
.4 .4

]
,

which row-reduces to
[
.4 .4
0 0

]
, so the nullspace consists of multiples of ~v2 =

[
−1
1

]
.
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Therefore, we see that A = SΛS−1 where

S =
[
1 −1
1 1

]
and Λ =

[
1 0
0 .2

]
.

Since

Λk =
[
1 0
0 .2

]k

=
[
1k 0
0 (.2)k

]
=

[
1 0
0 1

5k

]
,

we see that Λk →
[
1 0
0 0

]
as k →∞.

Therefore,

Ak = SΛkS−1 =
[
1 −1
1 1

] [
1 0
0 1

5k

] [
1/2 1/2
−1/2 1/2

]
=

[
1 −1
1 1

] [
1
2

1
2

− 1
2·5k

1
2·5k

]
=

[
1
2 + 1

2·5k
1
2 −

1
2·5k

1
2 −

1
2·5k

1
2 + 1

2·5k

]
.

Hence,

Ak →
[
1/2 1/2
1/2 1/2

]
as k →∞. Each column of this matrix is an eigenvector of A corresponding to the eigenvalue
λ1 = 1 of A.

3. Problem 5.2.32. Diagonalize A and compute SΛkS−1 to prove this formula for Ak:

A =
[
2 1
1 2

]
has Ak =

1
2

[
3k + 1 3k − 1
3k − 1 3k + 1

]
.

Answer: To diagonalize A, first find the eigenvalues:

0 = det(A− λI) =
∣∣∣∣2− λ 1

1 2− λ

∣∣∣∣
= (2− λ)2 − 1

= λ2 − 4λ + 3
= (λ− 3)(λ− 1),

so the eigenvalues of λ1 = 3 and λ2 = 1. Hence, the eigenvector corresponding to λ1 = 3 is
the generator of the nullspace of

A− 3I =
[
−1 1
1 −1

]
,

namely ~v1 =
[
1 1

]
.
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Likewise, the eigenvector corresponding to λ2 = 1 is the generator of the nullspace of

A− I =
[
1 1
1 1

]
,

namely ~v2 =
[
−1 1

]
.

Therefore, S and S−1 are just as in Problem 2 above, so we have that

Ak = SΛkS−1 =
[
1 −1
1 1

] [
3 0
0 1

]k [
1/2 1/2
−1/2 1/2

]
=

1
2

[
1 −1
1 1

] [
3k 0
0 1

] [
1 1
−1 1

]
=

1
2

[
1 −1
1 1

] [
3k 3k

−1 1

]
=

1
2

[
3k + 1 3k − 1
3k − 1 3k + 1

]
,

as desired.

4. Problem 5.2.34. Suppose that A = SΛS−1. Take determinants to prove that

det A = λ1 · λ2 · · ·λn = product of the λs.

This quick proof only works when A is .

Proof. Since the determinant of a product is the product of the determinants, we know that

det A = det(SΛS−1) = (det S)(detΛ)(detS−1).

In turn, since detS−1 = 1
det S , this implies that

det A = detΛ.

However, that implies that

det A = detΛ =

∣∣∣∣∣∣∣
λ1

. . .
λn

∣∣∣∣∣∣∣ = λ1 · · ·λn,

the product of the eigenvalues of A.

Clearly, this proof only works when A is diagonalizable.

5. Problem 5.2.36. If A = SΛS−1, diagonalize the block matrix B =
[
A 0
0 2A

]
. Finds its

eigenvalue and eigenvector matrices.
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Answer: Notice that, since A = SΛS−1, we also have that 2A = S(2Λ)S−1 is a diagonaliza-
tion of 2A. Then it’s straightforward to check that

B =
[
A 0
0 2A

]
=

[
S 0
0 S

] [
Λ 0
0 2Λ

] [
S−1 0
0 S−1

]
.

Since both Λ and 2Λ are diagonal, this gives a diagonalization of B. Hence, the eigenvalue
matrix is [

Λ 0
0 2Λ

]
and the eigenvector matrix is [

S 0
0 S

]
.

6. Problem 5.3.14. Multinational companies in the Americas, Asia, and Europe have assets of
$4 trillion. At the start, $2 trillion are in the Americas and $2 trillion in Europe. Each year
1
2 the American money stays home, and 1

4 goes to each of Asia and Europe. For Asia and
Europe, 1

2 stays home and 1
2 is sent to the Americas.

(a) Find the matrix that givesAmericas
Asia

Europe


year k+1

= A

Americas
Asia

Europe


year k

.

Answer: Given the above description of the transition, it’s easy to see that

A =

1/2 1/2 1/2
1/4 1/2 0
1/4 0 1/2

 .

(b) Find the eigenvalues and eigenvectors of A.
Answer: To find the eigenvalues, solve

0 = det(A− λI) =

∣∣∣∣∣∣
1
2 − λ 1

2
1
2

1
4

1
2 − λ 0

1
4 0 1

2 − λ

∣∣∣∣∣∣
=

(
1
2
− λ

) ∣∣∣∣1
2 − λ 0

0 1
2 − λ

∣∣∣∣− 1
2

∣∣∣∣1
4 0
1
4

1
2 − λ

∣∣∣∣ +
1
2

∣∣∣∣1
4

1
2 − λ

1
4 0

∣∣∣∣
=

(
1
2
− λ

)3

− 1
8

(
1
2
− λ

)
− 1

8

(
1
2
− λ

)
= −λ3 +

3
2
λ2 − 1

2
λ

= −λ

(
λ2 − 3

2
λ +

1
2

)
= −λ

(
λ− 1

2

)
(λ− 1)
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so the three eigenvalues of A are

λ1 = 1, λ2 =
1
2
, λ3 = 0.

The eigenvector corresponding to λ1 = 1 is the generator of the nullspace of

A− I =

−1/2 1/2 1/2
1/4 −1/2 0
1/4 0 −1/2

 ,

which row-reduces to −1/2 0 1
0 −1/4 1/4
0 0 0

 .

Therefore, the nullspace consists of multiples of ~v1 =

2
1
1

, so this is the eigenvector

corresponding to the eigenvalue λ1 = 1.
The eigenvector corresponding to λ2 = 1

2 is the generator of the nullspace of

A− 1
2
I =

 0 1/2 1/2
1/4 0 0
1/4 0 0

 ,

which row-reduces to  0 1/2 1/2
1/4 0 0
0 0 0

 .

Therefore, the nullspace consists of multiples of ~v2 =

 0
−1
1

, so this is the eigenvector

corresponding to the eigenvalue λ2 = 1
2 .

The eigenvector corresponding to λ3 = 0 is the generator of the nullspace of

A =

1/2 1/2 1/2
1/4 1/2 0
1/4 0 1/2

 ,

which row-reduces to 1/2 0 1
0 1/4 −1/4
0 0 0

 .

Therefore, the nullspace consists of multiples of ~v3 =

−2
1
1

, so this is the eigenvector

corresponding to the eigenvalue λ3 = 0.
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(c) Find the limiting distribution of the $4 trillion as the world ends.
Answer: In year k the distribution is given by

c1λ
k
1~v1 + c2λ

k
2~v2 + c3λ

k
3~v3

for some c1, c2, c3. Since λk
3 = 0k = 0 for any k > 0 and since λk

2 = 1
2k → 0 as k → ∞,

we only have to worry about the first term in the above.
Since λk

1 = 1k = 1 for all k, the first term simplifies as

c1~v1 = c1

2
1
1

 ,

so, as the world ends, the distribution will be a multiple of ~v1. In fact, since the entries
in ~v1 add up to four, we see that c1 = 1, so the limiting distribution has $2 trillion in
the Americas, $1 trillion in Asia and $1 trillion in Europe.

(d) Find the distribution of the $4 trillion at year k.
Answer: We know that there are constants c1, c2, c3 so that, in year k, the distribution
is given by

c1λ
k
1~v1 + c2λ

k
2~v2 + c3λ

k
3~v3 = c11k

2
1
1

 + c2

(
1
2

)k
 0
−1
1

 + c30k

−2
1
1


= c1

2
1
1

 +
c2

2k

 0
−1
1

 .

In particular, when k = 0, we have that2
0
2

 = c1

2
1
1

 + c2

 0
−1
1

 =

 2c1

c1 − c2

c1 + c2

 ,

so c1 = c2 = 1. Therefore, the distribution in year k is2
1
1

 +
1
2k

 0
−1
1

 =

 2
1− 1

2k

1 + 1
2k

 .

In other words, in year k, the Americas have $2 trillion, Asia has $
(
1− 1

2k

)
trillion and

Europe has $
(
1 + 1

2k

)
trillion.

7. Problem 5.4.8. Suppose the rabbit population r and the wolf population w are governed by

dr

dt
= 4r − 2w

dw

dt
= r + w.
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(a) Is this system stable, neutrally stable, or unstable?

Answer: Let ~p(t) =
[
r(t)
w(t)

]
be the population vector. Then the above system becomes

~p ′(t) =
[
4 −2
1 1

]
~p(t).

We want to find the eigenvalues of the matrix A =
[
4 −2
1 1

]
. To do so, we want to solve

0 = det(A− λI) =
∣∣∣∣4− λ −2

1 1− λ

∣∣∣∣
= (4− λ)(1− λ) + 2

= λ2 − 5λ + 6
= (λ− 2)(λ− 3).

Therefore, the eigenvalues of A are λ1 = 3 and λ2 = 2. Therefore, the system must be
unstable, since both eigenvalues are positive real numbers.

(b) If initially r = 300 and w = 200, what are the populations at time t?
Answer: Since we’ve already found the eigenvalues of A, the next step is to diagonalize
A. To do so, we need to find the eigenvectors of A. The eigenvector corresponding to
λ1 = 3 will be the generator of the nullspace of

A− 3I =
[
1 −2
1 −2

]
.

The nullspace consists of multiples of the vector ~v1 =
[
2
1

]
, so this is the eigenvector

corresponding to λ1 = 3.
The eigenvector corresponding to λ2 = 2 will be the generator of the nullspace of

A− 2I =
[
2 −2
1 −1

]
.

The nullspace consists of multiples of the vector ~v2 =
[
1
1

]
, so this is the eigenvector

corresponding to λ2 = 2.
Thus,

S =
[
2 1
1 1

]
is the eigenvector matrix of A, and

Λ =
[
3 0
0 2

]
is the eigenvalue matrix.
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Since det S = 2− 1 = 1, we see that

S−1 =
[

1 −1
−1 2

]
,

so

A = SΛS−1 =
[
2 1
1 1

] [
3 0
0 2

] [
1 −1
−1 2

]
.

Therefore,

eAt = SeΛtS−1 =
[
2 1
1 1

] [
e3t 0
0 e2t

] [
1 −1
−1 2

]
,

so we have that

~p(t) = eAt~p(0) =
[
2 1
1 1

] [
e3t 0
0 e2t

] [
1 −1
−1 2

] [
300
200

]
=

[
2 1
1 1

] [
e3t 0
0 e2t

] [
100
100

]
=

[
2 1
1 1

] [
100e3t

100e2t

]
=

[
200e3t + 100e2t

100e3t + 100e2t

]
.

Therefore, the population of rabbits at time t is r(t) = 200e3t + 100e2t, whereas the
population of wolves at time t is w(t) = 100e3t + 100e2t.

(c) After a long time, what is the proportion of rabbits to wolves?
Answer: When t is very large, e3t is much larger than e2t, so only the e3t terms will
matter in the above expression for ~p(t). Therefore, for large t the population vector is
approximately [

200e3t

100e3t

]
= e3t

[
200
100

]
,

so there are twice as many rabbits as wolves.

8. Problem 5.4.36. Write A =
[
1 1
0 0

]
in the form SΛS−1. Find eAt from SeΛtS−1.

Answer: We want to diagonalize A, so the first step is to find the eigenvalues of A. Thus,
we want to solve

0 = det(A− λI) =
∣∣∣∣1− λ 1

0 −λ

∣∣∣∣
= (1− λ)(−λ)− 0(1)
= λ(λ− 1),

so the eigenvalues of A are λ1 = 1 and λ2 = 0. Then the eigenvector associated to λ1 = 1 is
the generator of the nullspace of

A− I =
[
0 1
0 −1

]
.
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Hence, the nullspace consists of multiples of the vector ~v1 =
[
1
0

]
, so this is the eigenvector

associated to λ1 = 1.

On the other hand, the eigenvector associated to λ2 = 0 is the generator of the nullspace of

A =
[
1 1
0 0

]
.

This nullspace consists of multiples of the vector ~v2 =
[
−1
1

]
, so this is the eigenvector asso-

ciated to λ2 = 0.

Therefore, the eigenvector matrix is

S = [~v1 ~v2] =
[
1 −1
0 1

]
and the eigenvalue matrix is

Λ =
[
1 0
0 0

]
.

Since det S = 1, we can see that

S−1 =
[
1 1
0 1

]
,

so we have that

A = SΛS−1 =
[
1 −1
0 1

] [
1 0
0 0

] [
1 1
0 1

]
.

Therefore,

eAt = SeΛtS−1 =
[
1 −1
0 1

] [
et 0
0 e0t

] [
1 1
0 1

]
=

[
1 −1
0 1

] [
et 0
0 1

] [
1 1
0 1

]
=

[
1 −1
0 1

] [
et et

0 1

]
=

[
et et − 1
0 1

]
9. (Bonus Problem) Problem 5.4.42. Find a solution x(t), y(t) of the first system that gets

large as t →∞. To avoid this instability a scientist thought of exchanging the two equations!

dx/dt = 0x− 4y
dy/dt = −2x + 2y

becomes
dy/dt = −2x + 2y
dx/dt = 0x− 4y.

Now the matrix
[
−2 2
0 −4

]
is stable. It has λ < 0. Comment on this craziness.
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Answer: Let

~z(t) =
[
x(t)
y(t)

]
.

Then we can write the above system of equations as

~z ′(t) =
[
x′(t)
y′(t)

]
=

[
0x(t)− 4y(t)
−2x(t) + 2y(t)

]
=

[
0 −4
−2 2

] [
x(t)
y(t)

]
= ~z(t).

In other words, if A =
[

0 −4
−2 2

]
, then ~z ′(t) = A~z(t).

Therefore, to solve for ~z(t), we first want to diagonalize A. The eigenvalues of A are the
solutions to the equation

0 = det(A− λI) =
∣∣∣∣−λ −4
−2 2− λ

∣∣∣∣
= −λ(2− λ)− 8

= λ2 − 2λ− 8
= (λ− 4)(λ + 2),

so the eigenvalues of λ1 = 4 and λ2 = −2. The eigenvector corresponding to λ1 = 4 will be
the generator of the nullspace of

A− 4I =
[
−4 −4
−2 −2

]
.

The nullspace of the matrix consists of multiples of ~v1 =
[
−1
1

]
, so this is the eigenvector

corresponding to λ1 = 4.

On the other hand, the eigenvector corresponding to λ2 = −2 will be the generator of the
nullspace of

A + 2I =
[

2 −4
−2 4

]
.

This nullspace is generated by multiples of ~v2 =
[
2
1

]
, so this is the eigenvector corresponding

to the eigenvalue λ2 = −2.

Thus, we see that the eigenvector matrix for A is

S =
[
−1 2
1 1

]
and the eigenvalue matrix is

Λ =
[
4 0
0 −2

]
.

Since det S = −3, we see that

S−1 =
1
−3

[
1 −2
−1 −1

]
=

[
−1/3 2/3
1/3 1/3

]
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and

A = SΛS−1 =
[
−1 2
1 1

] [
4 0
0 −2

] [
−1/3 2/3
1/3 1/3

]
.

In turn, solutions to the system of differential equations take the form

~z(t) = eAt~z(0) = SeΛtS−1~z(0)

=
[
−1 2
1 1

] [
e4t 0
0 e−2t

] [
−1/3 2/3
1/3 1/3

] [
x(0)
y(0)

]
=

[
−1 2
1 1

] [
e4t 0
0 e−2t

] [
−1

3x(0) + 2
3y(0)

1
3x(0) + 1

3y(0)

]
=

[
−1 2
1 1

] [(
−1

3x(0) + 2
3y(0)

)
e4t(

1
3x(0) + 1

3y(0)
)
e−2t

]
=

[ (
1
3x(0)− 2

3y(0)
)
e4t +

(
2
3x(0) + 2

3y(0)
)
e−2t(

−1
3x(0) + 2

3y(0)
)
e4t +

(
1
3x(0) + 1

3y(0)
)
e−2t

]
As long as x(0) and y(0) are not both equal to zero, we get a solution which gets large as
t →∞.

Now, we flip the equations:

dy/dt = −2x + 2y

dx/dt = 0x− 4y.

The matrix
[
−2 2
0 −4

]
is stable (it has eigenvalues −2 and −4). However, this matrix has

nothing to do with the above system, so there’s no conflict with the above reasoning. To see
that this is not the right matrix for this system, we write the system out as a matrix equation:[

y′(t)
x′(t)

]
=

[
−2x(t) + 2y(t)
0x(t)− 4y(t)

]
=

[
2 −2
−4 0

] [
y(t)
x(t)

]
.

Therefore, the relevant matrix is

A =
[

2 −2
−4 0

]
,

which you can check is unstable (it has eigenvalues 4 and −2, just as in the original system).
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