Math 113 HW \#4 Solutions

§2.4

16. Prove that

$$
\lim _{x \rightarrow-2}\left(\frac{1}{2} x+3\right)=2
$$

using the ε, δ definition of limit and illustrate with a diagram like Figure 9.
Proof. Suppose $\varepsilon>0$. Let $\delta=2 \varepsilon$. If

$$
0<|x-(-2)|<\delta
$$

then

$$
\begin{aligned}
\left|\left(\frac{1}{2} x+3\right)-2\right| & =\left|\frac{1}{2} x+1\right| \\
& =\frac{1}{2}|x+2| \\
& <\frac{1}{2} \delta \\
& =\frac{1}{2}(2 \varepsilon) \\
& =\varepsilon,
\end{aligned}
$$

where we used the fact that $|x-(-2)|<\delta$ to go from the second to the third lines. Therefore, we see that $\lim _{x \rightarrow-2}\left(\frac{1}{2} x+3\right)=2$.
24. Prove that

$$
\lim _{x \rightarrow a} c=c
$$

using the ε, δ definition of limit.
Proof. Suppose $\varepsilon>0$. It's going to turn out that any possible choice of δ is going to work, I'll pick $\delta=1$. If

$$
0<|x-a|<\delta,
$$

then

$$
|c-c|=0<\epsilon,
$$

so $\lim _{x \rightarrow a} c=c$.

§2.5

4. From the graph of g, state the intervals on which g is continuous.

Answer: The function g is continuous on the following intervals:

$$
[-4,-2), \quad(-2,2), \quad(2,4), \quad(4,6), \quad(6,8) .
$$

16. Explain why the function

$$
f(x)= \begin{cases}\frac{1}{x-1} & \text { if } x \neq 1 \\ 2 & \text { if } x=1\end{cases}
$$

is discontinuous at $a=1$. Sketch a graph of the function.
Answer: If f were continuous at 1 , then, by the definition of continuity, we would have that

$$
\lim _{x \rightarrow 1} f(x)=f(1)=2 .
$$

So to show that f is not continuous at 1 , we just need to show that the limit on the left hand side is not equal to 2 .
In fact, the limit does not exist (and so clearly cannot equal 2) because

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{1}{x-1}=+\infty
$$

whereas

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \frac{1}{x-1}=-\infty
$$

24. Explain, using Theorems 4, 5, 7, and 9, why the function

$$
h(x)=\frac{\sin x}{x+1}
$$

is continuous at every number in its domain. State the domain.
Answer: The function $\sin x$ is defined for all real numbers x, as is the function $x+1$. The only problem is when $x=-1$ (when the denominator equals 0), so the domain of h is all real numbers except -1 .
Since $\sin x$ is continuous (Theorem 7) and since $x+1$ is continuous (Theorem 7), we have that $h(x)=\frac{\sin (x)}{x+1}$ is continuous on its domain by Theorem 4.
36. Show that

$$
f(x)= \begin{cases}\sin x & \text { if } x<\pi / 4 \\ \cos x \text { if } x \geq \pi / 4 & \end{cases}
$$

is continuous on $(-\infty, \infty)$.
Answer: Since $\sin x$ and $\cos x$ are continuous on $(-\infty, \infty)$, the only potential problem will occur at $x=\pi / 4$. Now, we need to check that

$$
\lim _{x \rightarrow \pi / 4} f(x)=f(\pi / 4)=\cos (\pi / 4)=\frac{1}{\sqrt{2}}
$$

(which can also be written as $\frac{\sqrt{2}}{2}$). To see this, we check the limit from each side separately. From the left,

$$
\lim _{x \rightarrow \pi / 4^{-}} f(x)=\lim _{x \rightarrow \pi / 4^{-}} \sin x=\sin (\pi / 4)=\frac{1}{\sqrt{2}}
$$

since $\sin x$ is continuous.
From the right,

$$
\lim _{x \rightarrow \pi / 4^{+}} f(x)=\lim _{x \rightarrow \pi / 4^{+}} \cos x=\cos (\pi / 4)=\frac{1}{\sqrt{2}}
$$

since $\cos x$ is continuous.
Therefore, since the limits from both sides agree and are equal to $\frac{1}{\sqrt{2}}$, we see that

$$
\lim _{x \rightarrow \pi / 4} f(x)=\frac{1}{\sqrt{2}},
$$

so f is indeed continuous.
48. Use the Intermediate Value Theorem to show that there is a solution of the equation

$$
\sqrt[3]{x}=1-x
$$

in the interval $(0,1)$.
Answer: Solutions to the above equation are also solutions to the equation

$$
x+\sqrt[3]{x}-1=0
$$

To see that this equation has a solution, let $f(x)=x+\sqrt[3]{x}-1$. Then

$$
\begin{aligned}
& f(0)=-1 \\
& f(1)=1 .
\end{aligned}
$$

Since $f(x)$ is a continuous function, the Intermediate Value Theorem guarantees that there is some c between 0 and 1 such that $f(c)=0$...but this c is precisely a solution to the given equation.

§2.6

6. Sketch the graph of an example of a function f that satisfies all of the conditions

$$
\lim _{x \rightarrow 0^{+}} f(x)=\infty, \quad \lim _{x \rightarrow 0^{-}} f(x)=-\infty, \quad \lim _{x \rightarrow \infty} f(x)=1, \quad \lim _{x \rightarrow-\infty} f(x)=1
$$

Answer:

18. Find the limit

$$
\lim _{y \rightarrow \infty} \frac{2-3 y^{2}}{5 y^{2}+4 y}
$$

Answer: Dividing both numerator and denominator by y^{2}, we get

$$
\lim _{y \rightarrow \infty} \frac{\frac{1}{y^{2}}\left(2-3 y^{2}\right)}{\frac{1}{y^{2}}\left(5 y^{2}+4 y\right)}=\lim _{y \rightarrow \infty} \frac{\frac{2}{y^{2}}-3}{5+\frac{4}{y}},
$$

which, using the Limit Law for quotients, is equal to

$$
\frac{\lim _{y \rightarrow \infty}\left(\frac{2}{y^{2}}-3\right)}{\lim _{y \rightarrow \infty}\left(5+\frac{4}{y}\right)}=-\frac{3}{5}
$$

Therefore,

$$
\lim _{y \rightarrow \infty} \frac{2-3 y^{2}}{5 y^{2}+4 y}=-\frac{3}{5}
$$

28. Find the limit

$$
\lim _{x \rightarrow \infty} \cos x .
$$

Answer: Because $\cos (2 n \pi)=1$ for any n and because $\cos ((2 n+1) \pi)=-1$ for any n, this limit cannot exist: no matter how far out we go on the x-axis, $\cos x$ is still oscillating between 1 and -1 , so it never settles down to a limit.
58. (a) A tank contains 5000 L of pure water. Brine that contains 30 g of salt per liter of water is pumped into the tank at a rate of $25 \mathrm{~L} / \mathrm{min}$. Show that the concentration of salt after t minutes (in grams per liter) is

$$
C(t)=\frac{30 t}{200+t} .
$$

Answer: Since the tank starts with 5000 L of water and since $25 \mathrm{~L} / \mathrm{min}$ of brine pours in, the number of liters of water in the tank is given by

$$
5000+25 t
$$

On the other hand, the tank starts with no salt in it and, for each liter of brine that pours in, 30 g of salt pours in. Hence, the number of grams of salt in the tank is given by

$$
25(30 t) .
$$

Therefore, the concentration of salt is given by

$$
C(t)=\frac{25(30 t)}{5000+25 t}=\frac{25(30 t)}{25(200+t)}=\frac{30 t}{200+t} .
$$

(b) What happens to the concentration as $t \rightarrow \infty$?

Answer: As $t \rightarrow \infty$, the concentration of salt is given by

$$
\lim _{t \rightarrow \infty} C(t)=\lim _{t \rightarrow \infty} \frac{30 t}{200+t}
$$

Dividing both numerator and denominator by t yields

$$
\lim _{t \rightarrow \infty} \frac{\frac{1}{t} 30 t}{\frac{1}{t}(200+t)}=\lim _{t \rightarrow \infty} \frac{30}{\frac{200}{t}+1}=30 .
$$

So eventually the concentration of salt in the tank approaches $30 \mathrm{~g} / \mathrm{L}$, which is the same as the concentration of salt in the brine. In other words, the brine eventually overpowers the pure water.

Extra Credit: Why is problem 58 sort of bogus?
Answer: 58(b) makes it sound like the concentration of salt in an actual tank approaches $30 \mathrm{~g} / \mathrm{L}$. But as $t \rightarrow \infty$ the amount of water in the tank also goes to infinity. So this limiting behavior could never happen in an actual tank.

