CHAPTER 5 REVIEW, PROBLEM 6

(a): Write f15(x—|—2x5)dx as a limit of Riemann sums, taking the sample
points to be the right endpoints.
(b): Use the Fundamental theorem to evaluate the integral.

Solution:

(a): If we let f(x) = x+22°, then we know that, as a limit of Riemann
sums,
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where zg = 1, x,, = 5 and the interval [1, 5] is split up into n subin-
tervals [x;, ;1] of equal width Ax.

Breaking the interval [1,5] into n subintervals of equal width
means that each such subinterval must be of width
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Now, the point x7 is the right endpoint of the first subinterval,
[1, 1], meaning that x; is at a distance Az = % from 1. Therefore,

4
xlzl—}—A:U:l—i—ﬁ.

Similarly, the point z; is the right endpoint of the ith subinterval,
so there are 7 subintervals of width Ax = % between x; and 1.
Therefore,
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Therefore,

f(xl-):f<1+ij;> - <1+ii> +2<1+¢i>5.

Plugging Az and f(x;) into (1), we see that
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(b): Using the Fundamental Theorem of Calculus,
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