MATH 114 MIDTERM 3 SOLUTIONS

CLAY SHONKWILER

TRUE/FALSE

(1) In Cartesian coordinates, if R is the rectangle a < x <b, ¢ <y <d
in the zy-plane, [, f(z,y)dA = ff fcdf(x,y)dydx.
Answer: True. This is simply Fubini’s Theorem.

&

(2) f(z,y) = 32%y + y> — 322 — 3y? + 2 has exactly one saddle point.
Answer: False. In fact, f has two saddle points. To see this, we
compute critical points:

fz = 6xy — 62

fy:3$2+3y2—6y
When 0 = f, = 6xy — 62 = 6x(y — 1), so either z =0 or y = 1. If
z =0 and f, =0, then 0 = 3y*> — 6y = 3y(y — 2), so either y = 0
ory =2 Ify=1and f, =0, then 0 = 322 +3 — 6 = 322 — 3,

so 2 = 1, meaning x = +1. Therefore, we have the following four
critical points for f:

(0,0) (0,2) (1,1) (—1,1).

Now, to use the second derivative test, we need to compute the
second partials:

Jaz =6y —6
frzy = 6
fyy =6y —6
Hence,
Fao(1,1) fyy (1, 1) = (fay(1,1))? = 0 =36 = =36 < 0
and

Foa(=1,1) fyy (=1,1) = (fay(—1,1))> =0 — 36 = —36 < 0,
so (1,1) and (—1,1) are both saddle points of f.
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(3) If Vg(zo,y0) = 0, then the point (xq,yo) is a critical point of g(z,y).
Answer: True. Remember, by definition,

Vg = gzi+ gyj,

so if Vg(zo,yo) = 0, then g, (zo,y0) = 0 and g, (0, y0) = 0, which is
precisely what it means for (zg,y9) to be a critical point of g.

&
(4) If R is the rectangle —a < x < a, —c¢ < y < ¢ in the zy-plane, then

/CC C; f(z,y)dzdy = 2/0C /Oa f(z,y)dzdy.

Answer: False. This is only true when f is symmetric about
both the z- and y-axes. To see an example where equality does not
hold, suppose f(z,y) = x +y. Then

/ f,y)dady = / / (2 + y)dady
c 2 a
[ 5m] @

which is clearly non-zero for any interesting choices of a and c.

)
(5) If (a,b) is a critical point of f(z,y) and fr.(a,bd) fyy(a,b) < 3y(a, b),
then f has a saddle point at (a,b).
Answer: True. This is essentially what the second derivative test
says. In particular, if the above inequality holds, then

fl‘x(av b)fyy(avb) - fmzy(a) b) < 07
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so (a,b) is a saddle point of f.
&

ffl fo6 2?sin(z — y)dedy = foﬁ ffl 22 sin(x — y)dydx

Answer: True. The fact that we can interchange the order of
integration is a consequence of (or, if you prefer, part of the proof
of) Fubini’s Theorem.

&

A rectangle of length [ and width w has a fixed perimeter (i.e.
perimeter = constant). Under these conditions, the rectangle of
maximum area is a square.

Answer: True. This is a well-known geometric result. To prove
it, we let a(l,w) = lw be the area function. Now, we want to
maximize a subject to the constraint that the perimeter p(l,w) =
20 + 2w = ¢ for some constant c¢. We can use Lagrange Multipliers:

(w,l) =Va=AVp=\(2,2)
p(l,w) =20+ 2w =rc

Hence, w = 2\ and [ = 2\, which means that w = [ when a is
maximized subject to the given constraint; obviously, when | = w,
the rectangle is a square.

&

If, for some two variable function f(x,y), % = % for all real (z,vy),

then f(z,y) is a constant.

Answer: False. Consider, for example, f(x,y) = 2z + 2y. Then

% =2 and % = 2, but f is certainly non-constant.

&

MuLrtIiPLE CHOICE

If R is the region inside the circle 224+y? = 4, then f fR /22 + 12dA
is equal to...
Answer: Option E, f02 fo% r3 cos@dfdr. To see this, first note

that /22 4+ y2 = r and = rcosf. Also, the circle 2 + y? = 4 is
given by r2 = 4 or r = 2, with # varying from 0 to 2. Hence,

2 2w 2 2w
// zy/ 2?4+ y?dA = / / r cos Ordfrdr = / / 3 cos 0dfdr.
R o Jo o Jo

(2)

Evaluate fol fOQ(x + y)dzdy.
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Answer: Option F, 3. This is just a straight computation:

1,2 17,2 2
/ / (x + y)dxdy :/ [ —i—:ry} dy
o Jo 0o L2 0

1

=/ 2+ 2y]dy

0

1
= [29 + yﬂo
3

&

How many critical points does the function f(z,y) = 22+y?+22%y+3
have?

Answer: Option D, 3. We need to compute the partial deriva-
tives:

fo =2z + 4oy = 22(1 + 2y)
fy=2y+ 222
When f, =0, either 2x =0 or 14+ 2y = 0, so either x =0 or y = _71
Now, when x = 0 and f, = 0, we have that
0 =2y +2(0)% = 2y,
so y =0. When y = _71 and f, = 0, then

-1

so 222 = 1, which in turn implies that = +—=. Therefore, we have

1
V2
three critical points for f:

o (53) 37
)

Let S be the surface z?y + 4223 — yz = 0. An equation for the
tangent plane to S at (1,2,—1) is ...

Answer: Option A, 2y + 10z = —6. To find the tangent plane,
we first compute the gradient of f(z,y, z) = 2%y + 422® — yz, which
will be perpendicular to the level surface 2%y + 4x23 — yz = 0:

Vf= <f:cafy7fz> = (2zy + 423,332 -z, 12222 — Y).
Therefore,
Vf(1,2,-1) =(0,2,10).

Since this vector is perpendicular to the level surface at this point,
it is also perpendicular to the tangent plane at the point. We know
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how to compute the equation of a plane through the point (1,2, —1)
perpendicular to the vector (0,2, 10); namely, the plane is given by:
O(x—1)+2(y—2)+10(z+1) =0,
or
2y 4+ 10z = —6.

&

(5) The point at which the function f(z,y) = zy — 2%y — 2y? has a local
maximum is:
Answer: Option B, (1/3,1/3). To find the local maximum, we
need to compute the critical points, which means we need to deter-
mine the partial derivatives:

fo=y—2xy—y* =y(l -2z —y)
fy:xfofoy:x(lffoy)
When f, = 0, either y = 0 or 1 — 2z — y = 0. On the other hand,
when f, = 0, either x = 0 or 1 —2 — 2y = 0; hence the critical points
of f are (0,0) and those points satisfying the system:
1-22—-y=0
l—2—-2y=0

From the first equation, we see that y = 1 — 2z; plugging that into
the second equation yields:

0=1-z-2(1-22)=1—2—2+4z = -1+ 3z,

SO x = % In turn, this implies that y =1 — 2 (%) = % Therefore,
the critical points of f are

(0,0) <;;) |

Now, we need to apply the second derivative test, which means we
need to compute the second partials:

f:m: = _2y
foy =1—2x
fyy = -2z

Hence,

fxx(oao)fyy(o,o) — fzy(0,0) =0-1=-1<0

and

Fea(1/3,1/3) £y (1/3,1/3) — f2,(1/3,1/3) = (—2/3)(—2/3) — (1 — 2/3)*
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Since f,.(1/3,1/3) = —2/3, we see that (1/3,1/3) is a local maxi-
mum of f (and that the only other critical point, (0,0), is a saddle
point).

&

Given f(x,y) = 2%y%, u = (3/5,—4/5), the directional derivative
Dy f in the direction of u is ...

Answer: Option D, M.
vector, since

Note, first, that u is a unit

lu? = (3/5)% 4+ (—4/5)% = 9/25 + 16/25 = 1.

Now, remember that Dy f = V f - u, so we’ll need to determine V f.
To that end,

V= 2y’ 32%%).
Hence,

6xy®  122%y? B 6xy® — 1222y

Vo= (20, 30%) (35, ~4/5) = S~ 5

&

An ant is placed on a flat plate whose temperature distribution is
given by T'(x,y) = 32 + 2xy. If the ant’s initial position is (3, —6),
it should walk in which direction to cool off most rapidly?

Answer: Option C, —6i — 6j. The direction in which the ant will
cool off most rapidly is the direction in which T decreases fastest.
Remember that the direction of fastest decrease at the point (—3,6)
is given by —VT'(—3,6). Now,

VT = (T, T,) = (6 + 2y, 2z),
—VT(-3,6) = (6(—3) +2(6),2(-3)) = (-6, -6),

so the ant will cool off fastest if it walks in the direction —6i — 6j.

VAN

Evaluate [ [ [2?dV, R={(z,4,2)[0 <2 <y,0<y<1,0<z
1.
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Answer: Option E, 1/12. Using Fubini’s Theorem, we see that

1 1 Y
///xQdV:/ / / 22dxdydz
R o Jo Jo
1 1 xs}y
= — | dydz
s
1 p1,3
Y
= “—dydz
L
17,471
:/ [y} dz
0 0

12
1
1
= —dz
o 12
1
C12
L)
(9) Find the maximum rate of change of f(z,y,2) = { + Y at the point

(4,2,1).
Answer: Option D, @ The maximum rate of change of f at
(4,2,1) is simply given by |V f(4,2,1)]. Now,
1 —x 1 —y
Vf = <f27a fy7fz> = <§7 ? + ;7 272>
Hence,

Vf(4,2, 1) - <%7 ;4 + 17 _2> = <%707 _2>'

1
g VT
2
)

Thus, the maximum rate of change is
1\2
vra2nl = (5) + 07+ 2=
(10) Find the directional derivative of f(z,y,2) = ze= in the direction
of u= Zli+ Zj + 2k at the point (3,0,1).

Answer: Option A, 17/3. First, note that

|u’2_ ;1 2+ 22+ 22_1_’_%_'_%_1
-\ 3 3 3/ 9 9 9 7

so u is a unit vector. Hence, the directional derivative in the direction
of u is given by Vf(3,0,1) - u. Now,

-

Ty zy I zy —IY

VI = fur fy ) = <$6%%+67,x67;,xe7

Hence,

> <xy zy  zy L7 ay
= (—¢€ =z
22 z z

V£(3,0,1) =(1,9,0),
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and so

V£(3,0,1)-u=(1,9,0) - (-1/3,2/3,2/3) = %1 ? — %7

&

The function f(z,y) = 2? +y? 4+ xy has one critical point; determine
the location and nature of the point.
Answer: Option B, (0,0) is a local minimum. Now,

Je=2x+y
fy=2y+x
Now, if f, =0, 20 +y =0, so y = —2z. If f, = 0, then
0=2y+x=2(—-2z)+z=—4x+z = -3z,

so x = 0. Hence, y = —2(0) = 0, so (0,0) is the only critical point of
f. To use the second derivative test, we need to compute the second
partials:

Jzz =2
Joy =1
Jyy = 2.
Hence, foofyy—fz, = (2)(2)—1> =4—1=3 > 0. Since fz, =2 >0,

this means that (0,0) is a local minimum.

&

Find the minimum value of the function f(z,y) = 222 + y? subject
to the constraint zy = 2.
Answer: Option E, 4/2. We let g(z,y) = 2y — 2 and use La-
grange Multipliers:
(4z,2y) =V f = AVg = (y,x)
g(z,y) =2y —2=0.

Hence, 4x = Ay and 2y = Az. Thus, x = %, SO

Ay Ay
O=ay—2="2y—2="42_2
Ty 4 ) 43/
Note that A # 0 because, if it were, we would have x = y = 0, which
can’t happen, since g(0,0) = —2 # 0. Hence 3% = %, S0y = j:Q—\/‘/g.

In turn, this means that

A [(£28) VAV
Sl Evsal Rk

Thus,

2v2 1 1
i—f:y:f)\x:f/\ —_—.
2 V2

£VaVA L AVA
NoN 2 2 N
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Therefore, 2v/2 = 255, so A2 = 8, meaning A = +2v/2. Note that

A must be positive; if not, then x and y have opposite signs (since
4z = \y), which is impossible, since 2y = 2. Therefore, A = 2v/2, so

VA V2V2
G v V2

AW 2v2V2V2 o3
22 2{

Therefore, f has a minimum at (x,%) = (v/2, v/2v/2); this minimum
is given by

r(ve 2\@>=2(€/§)2+<\/ﬁ>2:2\/§+2ﬂ:4ﬂ

and

FREE RESPONSE

(1) Convert the integral f_22 Io A-a? e~ (@*+9*) dydz to polar coordinates,
then evaluate it. Sketch the region over which the integration is
performed.

Answer Since y ranges from 0 to v4 — 22, y? ranges from 0 to
4 — 22 Wthh corresponds to the half of the dlSC contained in the
circle 22 + y? = 4 above the z-axis. Hence, the region of integration
is:

ﬁ%—>

- B

FIGURE 1

Now, on this region, if we view it in polar coordinates, r ranges
from 0 to 2 and @ ranges from 0 to 7. Also, 2% +y? = r2. Hence, we
convert the integral to polar coordinates as:

4 2
/ / @*+9*) qydr = / / " rdrdd.
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Now, to compute the value of this integral, let’s use a u substitution,

where u = —r2. Then du = —2rdr. Hence,
T 2 5 1 ™ —4
/ / e " rdrdf = —/ / e'dudf
o Jo 2Jo Jo
o
T ) [e"]y " db
1 (T
= — [6_4 — 1] de
2 Jo
1 -
= — [(6_4 — 1)9]0

&

(2) Suppose that the production of a certain object depends on the
availability of two raw materials, x and y according to the function
p(z,y) = 22/3y*/3. The budget for the production is a fixed number
of dollars, $c. If each unit of material x costs $1000 and each unit
of material y costs $1000 and the total budget is $378,000, then the
budget constraint for the production (in units of $1000) is z + y =
$378. What is the maximum production possible given the budget
constraint?

Answer: Let g(z,y) = 2 +y — 378. Then the constraint is given
by g(x,y) = 0. Now, we use Lagrange Multipliers:

2 1y
(Ga Py, Sa?Py ™2 = Vp = AVg = A(1,1)

g(z,y) =x+y—378=0
Thus, we have the following system of equations:
2

gx’1/3y1/3 —
1
g902/3y—2/3 -

z+1y =378

Therefore, multiplying the top two equations by 3 and setting them
equal, we see that
92~ 1/3y1/3 — 52/3,-2/3,

2/3_ we see that

Hence, multiplying both sides by z'/3 and y
2y = z.

Therefore,
318 =x+y=2y+y=3y,
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so y = 126. Therefore, x = 2y = 252. Therefore, maximum pro-
duction occurs when (x,y) = (252,126) and maximum production
is
p(252,126) = 252%/31261/3 = 126 /4.
&

Find any global maxima or minima of h(x,y) = 1 + 22 4+ y? on the
disk 22 + 42 < 1.

Answer: Remember that absolute maxima and minima of h on
a region will occur at critical points or on the boundary. Hence, we
first need to compute critical points, which will occur when

0=h; =2x

0= hy =2y,
so the only critical point of h is at (0,0). h(0,0) = 1. Now, we
consider boundary points. The boundary of the disk is the circle
given by 22 + 32 = 1. Therefore, if (x,y) is on the boundary,

h(z,y) =142+ =1+1=2.

Therefore, (0,0) is the absolute minimum of h on this region and
every point on the boundary is an absolute maximum of A on the
region.

&

1(3—2) 4
Consider the integral fg’ J? (8=2) 04 ’ dydzdz.
(a) Sketch the solid whose volume is given by the integral.

FIGURE 2
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The dotted pink curves denote the paraboloid given by 4 — z~.

(b) Evaluate the integral.
Answer:

3 ri(3-2) p4—a? 3 ri(3-2) )
/ / / dyd:cdz:/ / [y]éfx dxdz
0o Jo 0 o Jo
3 ri3-2)
:/ / (4 — 2°)dzdz
o Jo
3 313(3—2)
:/ [4$ - x] dz
0 3 1o

- /03 [2(3 —z)— i(?) — z)3] dz.

Make the substitution v = 3 — z; then du = —dz. Hence,

/03 {2(3—2)—214(3—,2)3] dz:—3/30 [2u—214u3] du
:/0 [2u—214u3] du

e
- 96 |,
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