
MATH 114 MIDTERM 3 SOLUTIONS

CLAY SHONKWILER

True/False

(1) In Cartesian coordinates, if R is the rectangle a ≤ x ≤ b, c ≤ y ≤ d

in the xy-plane,
∫
R f(x, y)dA =

∫ b
a

∫ d
c f(x, y)dydx.

Answer: True. This is simply Fubini’s Theorem.

♣
(2) f(x, y) = 3x2y + y3 − 3x2 − 3y2 + 2 has exactly one saddle point.

Answer: False. In fact, f has two saddle points. To see this, we
compute critical points:

fx = 6xy − 6x

fy = 3x2 + 3y2 − 6y

When 0 = fx = 6xy − 6x = 6x(y − 1), so either x = 0 or y = 1. If
x = 0 and fy = 0, then 0 = 3y2 − 6y = 3y(y − 2), so either y = 0
or y = 2. If y = 1 and fy = 0, then 0 = 3x2 + 3 − 6 = 3x2 − 3,
so x2 = 1, meaning x = ±1. Therefore, we have the following four
critical points for f :

(0, 0) (0, 2) (1, 1) (−1, 1).

Now, to use the second derivative test, we need to compute the
second partials:

fxx = 6y − 6
fxy = 6x

fyy = 6y − 6

Hence,

fxx(1, 1)fyy(1, 1)− (fxy(1, 1))2 = 0− 36 = −36 < 0

and

fxx(−1, 1)fyy(−1, 1)− (fxy(−1, 1))2 = 0− 36 = −36 < 0,

so (1, 1) and (−1, 1) are both saddle points of f .

♣
1
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(3) If ∇g(x0, y0) = 0, then the point (x0, y0) is a critical point of g(x, y).
Answer: True. Remember, by definition,

∇g = gxi + gyj,

so if ∇g(x0, y0) = 0, then gx(x0, y0) = 0 and gy(x0, y0) = 0, which is
precisely what it means for (x0, y0) to be a critical point of g.

♣
(4) If R is the rectangle −a ≤ x ≤ a, −c ≤ y ≤ c in the xy-plane, then∫ c

−c

∫ a

−a
f(x, y)dxdy = 2

∫ c

0

∫ a

0
f(x, y)dxdy.

Answer: False. This is only true when f is symmetric about
both the x- and y-axes. To see an example where equality does not
hold, suppose f(x, y) = x + y. Then∫ c

−c

∫ a

−a
f(x, y)dxdy =

∫ c

−c

∫ a

−a
(x + y)dxdy

=
∫ c

−c

[
x2

2
+ xy

]a

−a

dy

=
∫ c

−c
2aydy

=
[
ay2
]c
−c

= 0.

On the other hand,

2
∫ c

0

∫ a

0
f(x, y)dxdy = 2

∫ c

0

∫ a

0
(x + y)dxdy

= 2
∫ c

0

[
x2

2
+ xy

]a

0

dy

= 2
∫ c

0

[
a2

2
+ ay

]
dy

= 2
[
a2

2
y +

a2

2
y2

]c

0

= ca2 + c2a2,

which is clearly non-zero for any interesting choices of a and c.
♣

(5) If (a, b) is a critical point of f(x, y) and fxx(a, b)fyy(a, b) < f2
xy(a, b),

then f has a saddle point at (a, b).
Answer: True. This is essentially what the second derivative test

says. In particular, if the above inequality holds, then

fxx(a, b)fyy(a, b)− f2
xy(a, b) < 0,
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so (a, b) is a saddle point of f .

♣
(6)

∫ 2
−1

∫ 6
0 x2 sin(x− y)dxdy =

∫ 6
0

∫ 2
−1 x2 sin(x− y)dydx

Answer: True. The fact that we can interchange the order of
integration is a consequence of (or, if you prefer, part of the proof
of) Fubini’s Theorem.

♣
(7) A rectangle of length l and width w has a fixed perimeter (i.e.

perimeter = constant). Under these conditions, the rectangle of
maximum area is a square.

Answer: True. This is a well-known geometric result. To prove
it, we let a(l, w) = lw be the area function. Now, we want to
maximize a subject to the constraint that the perimeter p(l, w) =
2l + 2w = c for some constant c. We can use Lagrange Multipliers:

〈w, l〉 = ∇a = λ∇p = λ〈2, 2〉
p(l, w) = 2l + 2w = c

Hence, w = 2λ and l = 2λ, which means that w = l when a is
maximized subject to the given constraint; obviously, when l = w,
the rectangle is a square.

♣
(8) If, for some two variable function f(x, y), ∂f

∂x = ∂f
∂y for all real (x, y),

then f(x, y) is a constant.
Answer: False. Consider, for example, f(x, y) = 2x + 2y. Then

∂f
∂x = 2 and ∂f

∂y = 2, but f is certainly non-constant.

♣

Multiple Choice

(1) If R is the region inside the circle x2+y2 = 4, then
∫ ∫

R x
√

x2 + y2dA
is equal to...

Answer: Option E,
∫ 2
0

∫ 2π
0 r3 cos θdθdr. To see this, first note

that
√

x2 + y2 = r and x = r cos θ. Also, the circle x2 + y2 = 4 is
given by r2 = 4 or r = 2, with θ varying from 0 to 2π. Hence,∫ ∫
R

x
√

x2 + y2dA =
∫ 2

0

∫ 2π

0
r cos θrdθrdr =

∫ 2

0

∫ 2π

0
r3 cos θdθdr.

♣
(2) Evaluate

∫ 1
0

∫ 2
0 (x + y)dxdy.
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Answer: Option F, 3. This is just a straight computation:∫ 1

0

∫ 2

0
(x + y)dxdy =

∫ 1

0

[
x2

2
+ xy

]2

0

dy

=
∫ 1

0
[2 + 2y] dy

=
[
2y + y2

]1
0

= 3

♣
(3) How many critical points does the function f(x, y) = x2+y2+2x2y+3

have?
Answer: Option D, 3. We need to compute the partial deriva-

tives:

fx = 2x + 4xy = 2x(1 + 2y)

fy = 2y + 2x2

When fx = 0, either 2x = 0 or 1+2y = 0, so either x = 0 or y = −1
2 .

Now, when x = 0 and fy = 0, we have that

0 = 2y + 2(0)2 = 2y,

so y = 0. When y = −1
2 and fy = 0, then

0 = 2
(
−1
2

)
+ 2x2 = −1 + 2x2,

so 2x2 = 1, which in turn implies that x = ± 1√
2
. Therefore, we have

three critical points for f :

(0, 0)
(

1√
2
,
−1
2

) (
−1√

2
,
−1
2

)
.

♣
(4) Let S be the surface x2y + 4xz3 − yz = 0. An equation for the

tangent plane to S at (1, 2,−1) is ...
Answer: Option A, 2y + 10z = −6. To find the tangent plane,

we first compute the gradient of f(x, y, z) = x2y + 4xz3 − yz, which
will be perpendicular to the level surface x2y + 4xz3 − yz = 0:

∇f = 〈fx, fy, fz〉 = 〈2xy + 4z3, x2 − z, 12xz2 − y〉.

Therefore,
∇f(1, 2,−1) = 〈0, 2, 10〉.

Since this vector is perpendicular to the level surface at this point,
it is also perpendicular to the tangent plane at the point. We know
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how to compute the equation of a plane through the point (1, 2,−1)
perpendicular to the vector 〈0, 2, 10〉; namely, the plane is given by:

0(x− 1) + 2(y − 2) + 10(z + 1) = 0,

or
2y + 10z = −6.

♣
(5) The point at which the function f(x, y) = xy−x2y−xy2 has a local

maximum is:
Answer: Option B, (1/3, 1/3). To find the local maximum, we

need to compute the critical points, which means we need to deter-
mine the partial derivatives:

fx = y − 2xy − y2 = y(1− 2x− y)

fy = x− x2 − 2xy = x(1− x− 2y)

When fx = 0, either y = 0 or 1 − 2x − y = 0. On the other hand,
when fy = 0, either x = 0 or 1−x−2y = 0; hence the critical points
of f are (0, 0) and those points satisfying the system:

1− 2x− y = 0
1− x− 2y = 0

From the first equation, we see that y = 1 − 2x; plugging that into
the second equation yields:

0 = 1− x− 2(1− 2x) = 1− x− 2 + 4x = −1 + 3x,

so x = 1
3 . In turn, this implies that y = 1 − 2

(
1
3

)
= 1

3 . Therefore,
the critical points of f are

(0, 0)
(

1
3
,
1
3

)
.

Now, we need to apply the second derivative test, which means we
need to compute the second partials:

fxx = −2y

fxy = 1− 2x

fyy = −2x

Hence,

fxx(0, 0)fyy(0, 0)− f2
xy(0, 0) = 0− 1 = −1 < 0

and

fxx(1/3, 1/3)fyy(1/3, 1/3)− f2
xy(1/3, 1/3) = (−2/3)(−2/3)− (1− 2/3)2

= 1/3
> 0.
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Since fxx(1/3, 1/3) = −2/3, we see that (1/3, 1/3) is a local maxi-
mum of f (and that the only other critical point, (0, 0), is a saddle
point).

♣

(6) Given f(x, y) = x2y3, u = 〈3/5,−4/5〉, the directional derivative
Duf in the direction of u is ...

Answer: Option D, 6xy3−12x2y2

5 . Note, first, that u is a unit
vector, since

|u|2 = (3/5)2 + (−4/5)2 = 9/25 + 16/25 = 1.

Now, remember that Duf = ∇f · u, so we’ll need to determine ∇f .
To that end,

∇f = 〈2xy3, 3x2y2〉.

Hence,

Duf = ∇f ·u = 〈2xy3, 3x2y2〉·〈3/5,−4/5〉 =
6xy3

5
−12x2y2

5
=

6xy3 − 12x2y2

5
.

♣

(7) An ant is placed on a flat plate whose temperature distribution is
given by T (x, y) = 3x2 + 2xy. If the ant’s initial position is (3,−6),
it should walk in which direction to cool off most rapidly?

Answer: Option C, −6i−6j. The direction in which the ant will
cool off most rapidly is the direction in which T decreases fastest.
Remember that the direction of fastest decrease at the point (−3, 6)
is given by −∇T (−3, 6). Now,

∇T = 〈Tx, Ty〉 = 〈6x + 2y, 2x〉,

so

−∇T (−3, 6) = 〈6(−3) + 2(6), 2(−3)〉 = 〈−6,−6〉,

so the ant will cool off fastest if it walks in the direction −6i− 6j.

♣

(8) Evaluate
∫ ∫ ∫

R x2dV , R = {(x, y, z)|0 ≤ x ≤ y, 0 ≤ y ≤ 1, 0 ≤ z ≤
1}.
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Answer: Option E, 1/12. Using Fubini’s Theorem, we see that∫ ∫ ∫
R

x2dV =
∫ 1

0

∫ 1

0

∫ y

0
x2dxdydz

=
∫ 1

0

∫ 1

0

[
x3

3

]y

0

dydz

=
∫ 1

0

∫ 1

0

y3

3
dydz

=
∫ 1

0

[
y4

12

]1

0

dz

=
∫ 1

0

1
12

dz

=
1
12

.

♣
(9) Find the maximum rate of change of f(x, y, z) = x

y + y
z at the point

(4, 2, 1).
Answer: Option D,

√
17
2 . The maximum rate of change of f at

(4, 2, 1) is simply given by |∇f(4, 2, 1)|. Now,

∇f = 〈fx, fy, fz〉 = 〈1
y
,
−x

y2
+

1
z
,
−y

z2
〉.

Hence,

∇f(4, 2, 1) = 〈1
2
,
−4
4

+ 1,−2〉 = 〈1
2
, 0,−2〉.

Thus, the maximum rate of change is

|∇f(4, 2, 1)| =

√(
1
2

)2

+ (0)2 + (−2)2 =

√
1
4

+ 4 =

√
17
4

=
√

17
2

.

♣
(10) Find the directional derivative of f(x, y, z) = xe

xy
z in the direction

of u = −1
3 i + 2

3 j + 2
3k at the point (3, 0, 1).

Answer: Option A, 17/3. First, note that

|u|2 =
(
−1
3

)2

+
(

2
3

)2

+
(

2
3

)2

=
1
9

+
4
9

+
4
9

= 1,

so u is a unit vector. Hence, the directional derivative in the direction
of u is given by ∇f(3, 0, 1) · u. Now,

∇f = 〈fx, fy, fz〉 = 〈xe
xy
z

y

z
+e

xy
z , xe

xy
z

x

z
, xe

xy
z
−xy

z2
〉 = 〈xy

z
e

xy
z +e

xy
z ,

x2

z
e

xy
z ,

−x2y

z2
e

xy
z 〉.

Hence,
∇f(3, 0, 1) = 〈1, 9, 0〉,
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and so

∇f(3, 0, 1) · u = 〈1, 9, 0〉 · 〈−1/3, 2/3, 2/3〉 =
−1
3

+
18
3

=
17
3

.

♣
(11) The function f(x, y) = x2 +y2 +xy has one critical point; determine

the location and nature of the point.
Answer: Option B, (0, 0) is a local minimum. Now,

fx = 2x + y

fy = 2y + x

Now, if fx = 0, 2x + y = 0, so y = −2x. If fy = 0, then

0 = 2y + x = 2(−2x) + x = −4x + x = −3x,

so x = 0. Hence, y = −2(0) = 0, so (0, 0) is the only critical point of
f . To use the second derivative test, we need to compute the second
partials:

fxx = 2
fxy = 1
fyy = 2.

Hence, fxxfyy−f2
xy = (2)(2)−12 = 4−1 = 3 > 0. Since fxx = 2 > 0,

this means that (0, 0) is a local minimum.
♣

(12) Find the minimum value of the function f(x, y) = 2x2 + y2 subject
to the constraint xy = 2.

Answer: Option E, 4
√

2. We let g(x, y) = xy − 2 and use La-
grange Multipliers:

〈4x, 2y〉 = ∇f = λ∇g = 〈y, x〉
g(x, y) = xy − 2 = 0.

Hence, 4x = λy and 2y = λx. Thus, x = λy
4 , so

0 = xy − 2 =
λy

4
y − 2 =

λ

4
y2 − 2.

Note that λ 6= 0 because, if it were, we would have x = y = 0, which
can’t happen, since g(0, 0) = −2 6= 0. Hence y2 = 8

λ , so y = ±2
√

2√
λ

.
In turn, this means that

x =
λy

4
=

λ

4

(
±2

√
2√

λ

)
= ±

√
2
√

λ

2
.

Thus,

±2
√

2√
λ

= y =
1
2
λx =

1
2
λ

(
±
√

2
√

λ

2

)
= ±λ

√
λ√
2

.



MATH 114 MIDTERM 3 SOLUTIONS 9

Therefore, 2
√

2 = λ2

2
√

2
, so λ2 = 8, meaning λ = ±2

√
2. Note that

λ must be positive; if not, then x and y have opposite signs (since
4x = λy), which is impossible, since xy = 2. Therefore, λ = 2

√
2, so

x =

√
λ√
2

=

√
2
√

2√
2

= 4
√

2

and

y =
λ
√

λ

2
√

2
=

2
√

2
√

2
√

2
2
√

2
=
√

2
√

2.

Therefore, f has a minimum at (x, y) = ( 4
√

2,
√

2
√

2); this minimum
is given by

f

(
4
√

2,

√
2
√

2
)

= 2
(

4
√

2
)2

+
(√

2
√

2
)2

= 2
√

2 + 2
√

2 = 4
√

2.

♣

Free Response

(1) Convert the integral
∫ 2
−2

∫ √4−x2

0 e−(x2+y2)dydx to polar coordinates,
then evaluate it. Sketch the region over which the integration is
performed.

Answer: Since y ranges from 0 to
√

4− x2, y2 ranges from 0 to
4 − x2, which corresponds to the half of the disc contained in the
circle x2 + y2 = 4 above the x-axis. Hence, the region of integration
is:

Figure 1

Now, on this region, if we view it in polar coordinates, r ranges
from 0 to 2 and θ ranges from 0 to π. Also, x2 + y2 = r2. Hence, we
convert the integral to polar coordinates as:∫ 2

−2

∫ √
4−x2

0
e−(x2+y2)dydx =

∫ π

0

∫ 2

0
e−r2

rdrdθ.
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Now, to compute the value of this integral, let’s use a u substitution,
where u = −r2. Then du = −2rdr. Hence,∫ π

0

∫ 2

0
e−r2

rdrdθ = −1
2

∫ π

0

∫ −4

0
eududθ

=
−1
2

∫ π

0
[eu]−4

0 dθ

=
−1
2

∫ π

0

[
e−4 − 1

]
dθ

=
−1
2
[
(e−4 − 1)θ

]π
0

=
π

2

(
1− 1

e4

)
♣

(2) Suppose that the production of a certain object depends on the
availability of two raw materials, x and y according to the function
p(x, y) = x2/3y1/3. The budget for the production is a fixed number
of dollars, $c. If each unit of material x costs $1000 and each unit
of material y costs $1000 and the total budget is $378, 000, then the
budget constraint for the production (in units of $1000) is x + y =
$378. What is the maximum production possible given the budget
constraint?

Answer: Let g(x, y) = x + y − 378. Then the constraint is given
by g(x, y) = 0. Now, we use Lagrange Multipliers:

〈2
3
x−1/3y1/3,

1
3
x2/3y−2/3〉 = ∇p = λ∇g = λ〈1, 1〉

g(x, y) = x + y − 378 = 0

Thus, we have the following system of equations:

2
3
x−1/3y1/3 = λ

1
3
x2/3y−2/3 = λ

x + y = 378

Therefore, multiplying the top two equations by 3 and setting them
equal, we see that

2x−1/3y1/3 = x2/3y−2/3.

Hence, multiplying both sides by x1/3 and y2/3, we see that

2y = x.

Therefore,
378 = x + y = 2y + y = 3y,
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so y = 126. Therefore, x = 2y = 252. Therefore, maximum pro-
duction occurs when (x, y) = (252, 126) and maximum production
is

p(252, 126) = 2522/31261/3 = 126 3
√

4.

♣
(3) Find any global maxima or minima of h(x, y) = 1 + x2 + y2 on the

disk x2 + y2 ≤ 1.
Answer: Remember that absolute maxima and minima of h on

a region will occur at critical points or on the boundary. Hence, we
first need to compute critical points, which will occur when

0 = hx = 2x

0 = hy = 2y,

so the only critical point of h is at (0, 0). h(0, 0) = 1. Now, we
consider boundary points. The boundary of the disk is the circle
given by x2 + y2 = 1. Therefore, if (x, y) is on the boundary,

h(x, y) = 1 + x2 + y2 = 1 + 1 = 2.

Therefore, (0, 0) is the absolute minimum of h on this region and
every point on the boundary is an absolute maximum of h on the
region.

♣

(4) Consider the integral
∫ 3
0

∫ 1
2
(3−z)

0

∫ 4−x2

0 dydxdz.
(a) Sketch the solid whose volume is given by the integral.

Figure 2
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The dotted pink curves denote the paraboloid given by 4− x2.
(b) Evaluate the integral.
Answer:∫ 3

0

∫ 1
2
(3−z)

0

∫ 4−x2

0
dydxdz =

∫ 3

0

∫ 1
2
(3−z)

0
[y]4−x2

0 dxdz

=
∫ 3

0

∫ 1
2
(3−z)

0
(4− x2)dxdz

=
∫ 3

0

[
4x− x3

3

] 1
2
(3−z)

0

dz

=
∫ 3

0

[
2(3− z)− 1

24
(3− z)3

]
dz.

Make the substitution u = 3− z; then du = −dz. Hence,∫ 3

0

[
2(3− z)− 1

24
(3− z)3

]
dz = −

∫ 0

3

[
2u− 1

24
u3

]
du

=
∫ 3

0

[
2u− 1

24
u3

]
du

=
[
u2 − u4

96

]3

0

= 9− 81
96

= 9− 27
32

=
261
32

.

♣
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