
MATH 114 MIDTERM 2 SOLUTIONS

CLAY SHONKWILER

True/False

(1) fy(a, b) = limy→b
f(a,y)−f(a,b)

y−b .
Answer: True. This is essentially the definition of fy, the partial

derivative of f with respect to y. You may recognize this in an
alternate form:

fy(a, b) = lim
h→0

f(a, b + h)− f(a, b)
h

,

but, if we let h = y − b, then this equation reduces to the one given
in the problem.

♣
(2) If f(x, y) is differentiable at some point (a, b), then

lim
(x,y)→(a,b)

f(x, y) = f(a, b).

Answer: True. If f is differentiable at (a, b), then f is certainly
continuous at (a, b). By definition, if f is continuous at (a, b), then

lim
(x,y)→(a,b)

f(x, y) = f(a, b).

♣
(3) If a function f(x, y) has continuous first partial derivatives at some

point, then the function is differentiable at that point.
Answer: The correct answer is actually “false,” although we

ended up accepting either answer as correct. To see that this state-
ment is false, consider the following function:

f(x, y) =

{
0 xy 6= 0
1 xy = 0

Then f is the constant function 1 along both axes, and so the partial
derivatives fx(0, 0) = 0 and fy(0, 0) = 0. However, it is clear that
f is not even continuous at the origin, let alone differentiable there,
so f is an example of a function with continuous partial derivatives
at the origin that is not differentiable at the origin. In order for a
function f to be differentiable at a point, it must have continuous
partial derivatives in a neighborhood of the point.

♣
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(4) If f(x, y) → L as (x, y) → (a, b) along every straight line passing
through (a, b), then lim(x,y)→(a,b) f(x, y) = L.

Answer: False. In order for the limit to exist, the limit along
every path through that point must agree, not just the straight-
line paths. For an example of a function for which the straight-
line paths all have the same limits but the limit does not exist, see
problem 1 from the solution key to the second practice midterm
(http://www.math.upenn.edu/˜fithian/114S05/smt2key.pdf).

♣
(5) If a vector function r(t) is of constant length (i.e. |r(t)| = constant),

then the function and its first derivative have the property r(t) ·
r′(t) = 0.

Answer: True. If |r(t)| = constant, then

|r(t)|2 = constant

as well. Hence,

0 =
d

dt
(|r(t)|2) =

d

dt
(r(t) · r(t))

=
dr
dt
· r(t) + r(t) · dr

dt

= 2r(t) · dr
dt

.

Therefore, r(t) · dr
dt = 0, which is to say that

r(t) · r′(t) = 0.

♣
(6) Match the functions to the surfaces and level curves.

Answer: Function 1, z = x2 + y2, has graph A and level curves
given in E, function 2, z = −5x√

x2+y2+1
, has graph C and level curves

given in D, and function 3, z = 1
4x2+y2 , has graph B and level curves

given in F.
♣

Multiple Choice

(1) Let f(x, y) = y sin(xy). Find fy(0, π/3).
Answer: B. Computing directly using the product rule, we see

that

fy = y cos(xy) · x + sin(xy) = xy cos(xy) + sin(xy).

Plugging in (x, y) = (0, π/3),

fy(0, π/3) = (0)(π/3) cos(0) + sin(0) = 0.

♣
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(2) What is the domain of the function z =
√

1− (x2 + y2).
Answer: C. In order for the square root to be well defined, we

must have that 1− (x2 + y2) ≥ 0, which is to say that

x2 + y2 ≤ 1.

This simply describes all points on and interior to the circle x2+y2 =
1, which is option C.

♣
(3) Evaluate the limit

lim
(x,y)→(0,0)

xy

x2 + xy + y2
.

Answer: F. To see that this limit does not exist, consider the
limit along the paths (i) where x = 0 and (ii) where y = x:

(i) lim
(x,y)→(0,0)

x=0

xy

x2 + xy + y2
= lim

y→0

0
y2

= 0;

(ii) lim
(x,y)→(0,0)

y=x

xy

x2 + xy + y2
= lim

x→0

x2

x2 + x2 + x2
= lim

x→0

x2

3x2
=

1
3
.

Since these two limits don’t agree, we see that the limit lim(x,y)→(0,0)
xy

x2+xy+y2

does not exist.

♣
(4) Let f(x, y) = (x3 + y4)5; find the value of fyx − fxy at the point

(1, 2).
Answer: E. Remember that mixed partial commute; that is, for

any differentiable function f , fyx = fxy, so fyx − fxy = 0. If you
didn’t remember this fact, you can compute directly. First, we need
to know the first partials:

fx = 5(x3 + y4)4 · (3x2) = 15x2(x3 + y4)4,

fy = 5(x3 + y4)4 · (4y3) = 20y3(x3 + y4)4.

Then, we compute the mixed partials:

fyx =
∂fx

∂y
= 15x2 · 4(x3 + y4)3 · (4y3) = 240x2y3(x3 + y4)3,

fxy =
∂fy

∂x
= 20y3 · 4(x3 + y4)3 · (3x2) = 240x2y3(x3 + y4)3.

We see that these agree at all points, so fyx − fxy = 0 at all points,
including the point (1, 2).

♣
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(5) ex = 3 sin y. Use implicit differentiation to find dy
dx when (x, y) =

(0, 0).
Answer: B. Differentiating implicitly, we see that

ex = 3 cos y
dy

dx
,

so
dy

dx

∣∣∣∣
(0,0)

=
e0

3 cos 0
=

1
3
.

♣
(6) Find the differential of z = 2x2y.

Answer: C. Recall the definition of the differential:

df =
∂f

∂x
dx +

∂f

∂y
dy.

Then we see that the differential will be

4xydx + 2x2dy.

♣
(7) Let z = xy2 + x3y and let x = x(t) and y = y(t) such that x(1) = 1,

y(1) = 2, x′(1) = 3 and y′(1) = 4. Find dz
dt when t = 1.

Answer: E. By the chain rule, we know that

(1)
dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y
dydt.

Now, ∂z
∂x = y2 + 3x2y; evaluating at t = 1, we’re dealing with the

point (1, 2). Hence,

∂z

∂x

∣∣∣∣
(1,2)

= 22 + 3(1)2(2) = 10.

On the other hand, ∂z
∂y = 2xy + x3. Evaluating at t = 1, we see that

∂z

∂x

∣∣∣∣
(1,2)

= 2(1)(2) + 13 = 5.

Therefore, plugging these numbers into (1) yields:

dz

dt

∣∣∣∣
t=1

= 10x′(1) + 5y′(1) = 10(3) + 5(4) = 50.

♣
(8) Find v(1/2) of a particle if a(t) = k and v(0) = i− j.

Answer: F. We know that a(t) = dv
dt , so

v(t)
∫

a(t)dt = tk + c,

where c = c1i + c2j + c3k. In other words,

v(t) = c1i + c2j + (t + c3)k.
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Now, we know that

i− j = v(0) = c1i + c2j + (0 + c3)k = c1i + c2j + c3k,

so c1 = 1, c2 = −1 and c3 = 0. Hence,

v(t) = i− j + tk.

Plugging in t = 1/2 yields our final answer,

v(1/2) = i− j +
1
2
k.

♣
(9) Find the distance from the origin to the plane 3x + 2y + z = 6.

Answer: E. To find the distance from the origin to the plane, we
need first to find a point P in the plane. Since 3(1) + 2(1) + 1 = 6,
the point P = (1, 1, 1) is in the plane. Now, we form the vector P0
from P to the origin:

P0 = (0− 1)i + (0− 1)j + (0− 1)k = −i− j− k

Now, the distance from the origin to the plane is given by
∣∣∣P0 · n

|n|

∣∣∣,
where n is a normal vector to the plane. For example, we know that

n = 3i + 2j + k

is normal to the plane, so we may as well use that. Note that

|n| =
√

32 + 22 + 12 =
√

14.

Therefore, the distance from the origin to the plane is:∣∣∣∣P0 · n
|n|

∣∣∣∣ =
1√
14
|(−i− j− k) · (3i + 2j + k)| = 1√

14
| − 3− 2− 1| = 6√

14
.

♣
(10) If u = xyz, find ∂u

∂z .
Answer: C. Remember that, if a is a constant,

d

dt

(
ag(t)

)
= ag(t)(ln a)

dg

dt
.

When we’re finding the partial with respect to z, we simply treat x
and y as constants, so this tells us that

∂u

∂z
= xyz(lnx)

∂

∂z
(yz) = yxyz lnx.

♣



6 CLAY SHONKWILER

Free Response

(1) Show that

lim
(x,y)→(0,0)

2x2 − y2

x2 + 2y2

does not exist.

Proof. Let’s take the limit along the path y = kx. Then

lim
(x,y)→(0,0)

y=kx

2x2 − y2

x2 + 2y2
= lim

x→0

2x2 − (kx)2

x2 + 2(kx2)
= lim

x→0

x2(2− k2)
x2(1 + 2k2)

= lim
x→0

2− k2

1 + 2k2
=

2− k2

1 + 2k2
.

Now, if we plug in different values of k, we’ll get different limits. For
example, when k = 1, we get

lim
(x,y)→(0,0)

y=x

2x2 − y2

x2 + 2y2
=

2− 1
1 + 2

=
1
3
,

whereas when k = 0, we get

lim
(x,y)→(0,0)

y=0

2x2 − y2

x2 + 2y2
=

2− 0
1 + 0

= 2.

Since we get different limits along different paths, the limit does not
exist. �

(2) The radius of a right circular cylinder is increasing at the rate of 2
cm/sec and the height is decreasing at the rate of 4cm/sec. At what
rate is the volume changing at the instant when the radius is 4 cm
and the height is 10 cm?

Answer: Since we’re asked to find the rate at which the volume
is changing, we should be trying to compute dV

dt . Now, remember
that

V = πr2h.

By the chain rule, we know that
dV

dt
=

∂V

∂r

dr

dt
+

∂V

∂h

dh

dt
.

Since dr
dt and dh

dt are given, we need only compute the partial deriva-
tives of V . Now,

∂V

∂r
= 2πrh

and
∂V

∂h
= πr2.

Hence, when r = 4 and h = 10,
dV

dt
= (2πrh)

dr

dt
+(πr2)

dh

dt
= 2π(4)(10)(2)+π(4)2(−4) = 160π−64π = 96π,
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so the volume is changing at a rate of 96πcm3/sec at this instant in
time.

♣
(3) Find a linearization of f(x, y) = x3y4 at the point (1, 1). Use your

linearization to find an approximate value for f(1, 1, 0.9).
Answer: Remember that the linearization at a point (x0, y0) is,

by definition, given by

L(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

Now, fx = 3x2y4 and fy = 4x3y3, so

fx(1, 1) = 3(1)2(1)4 = 3

and
fy(1, 1) = 4(1)3(1)3 = 4.

Also, f(1, 1) = (1)3(1)4 = 1, so

L(x, y) = f(1, 1)+3(x−1)+4(y−1) = 1+3(x−1)+4(y−1) = 3x+4y−6.

To find an approximate value for f(1.1, 0.9), we simply plug (x, y) =
(1.1, 0.9) into the above equation:

L(1.1, 0.9) = 3(1.1) + 4(0.9)− 6 = 3.3 + 3.6− 6 = 6.9− 6 = 0.9.

♣
(4) If r(t) = (t2 +3)i+(2t2− 3t+5)j describes the motion of a particle,

find:
(a) the velocity when t = 0
(b) the speed when t = 0
(c) the normal and tangential components of the acceleration

when t = 0
(d) the curvature when t = 0
Answer: We work one step at a time:
(a) If r(t) is as given, then

v(t) =
dr
dt

= 2ti + (4t− 3)j.

Hence,
v(3) = 2(3)i + (4(3)− 3)j = 6i + 9j.

(b) In general, the speed will be given by

|v(t)| =
√

(2t)2 + (4t− 3)2 =
√

4t2 + (16t2 − 24t + 9) =
√

20t2 − 24t + 9.

Hence,

|v(3)| =
√

20(9)− 24(3) + 9 =
√

180− 72 + 9 =
√

117 = 3
√

13.
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(c) Recall that aT = d|v|
dt . We computed |v(t)| in part (b) above,

so, using that computation, we see that

aT =
d|v|
dt

=
1
2
(20t2 − 24t + 9)−1/2 · (40t− 24) =

20t− 12√
20t2 − 24t + 9

.

Plugging in t = 3, we see that, at this point,

aT =
20(3)− 12√

20(9)− 24(3) + 9
=

48√
117

=
48

3
√

13
=

16√
13

.

Now, there are a number of different ways to compute aN; since we
haven’t computed κ yet, we’ll use the fact that

aN =
√
|a|2 − a2

T.

Now,

a(t) =
dv
dt

= 2i + 4j,
so

|a(t)| =
√

22 + 42 =
√

20.

Therefore,

aN =
√
|a|2 − a2

T =

√
20−

(
16√
13

)2

=

√
20− 256

13

=

√
260
13

− 256
13

=

√
4
13

=
2√
13

.

(d) There are a couple of different ways we could compute κ.
Perhaps the easiest is simply to remember that aN = κ |v|2. Hence,
when t = 3,

κ =
aN

|v|2
=

2√
13

(3
√

13)2
=

2
9(13)

√
13

=
2

117
√

13
=

6
117

√
117

.

♣
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