Poincaré Duality Angles on Riemannian Manifolds with Boundary

Clayton Shonkwiler

Department of Mathematics
Haverford College

March 9, 2010
Let M^n be a compact Riemannian manifold with non-empty boundary ∂M.
Let M^n be a compact Riemannian manifold with non-empty boundary ∂M.
de Rham’s Theorem

Suppose M^n is a compact, oriented, smooth manifold. Then

$$H^p(M; \mathbb{R}) \cong \mathcal{C}^p(M)/\mathcal{E}^p(M),$$

where $\mathcal{C}^p(M)$ is the space of closed p-forms on M and $\mathcal{E}^p(M)$ is the space of exact p-forms.
If M is Riemannian, the metric induces an L^2 inner product on $\Omega^p(M)$:

$$\langle \omega, \eta \rangle := \int_M \omega \wedge \star \eta.$$
If M is Riemannian, the metric induces an L^2 inner product on $\Omega^p(M)$:

$$\langle \omega, \eta \rangle := \int_M \omega \wedge \star \eta.$$

When M is closed, the orthogonal complement of $E^p(M)$ inside $C^p(M)$ is

$$\mathcal{H}^p(M) := \{ \omega \in \Omega^p(M) : d\omega = 0, \delta \omega = 0 \}$$
If M is Riemannian, the metric induces an L^2 inner product on $\Omega^p(M)$:

$$\langle \omega, \eta \rangle := \int_M \omega \wedge \star \eta.$$

When M is closed, the orthogonal complement of $\mathcal{E}^p(M)$ inside $\mathcal{C}^p(M)$ is

$$\mathcal{H}^p(M) := \{ \omega \in \Omega^p(M) : d\omega = 0, \delta \omega = 0 \}$$

Kodaira called this the space of *harmonic p-fields* on M.
Hodge’s Theorem

If M^n is a closed, oriented, smooth Riemannian manifold,

$$H^p(M; \mathbb{R}) \cong \mathcal{H}^p(M).$$
Define \(i : \partial M \hookrightarrow M \) to be the natural inclusion.
Define \(i : \partial M \hookrightarrow M \) to be the natural inclusion.

The \(L^2 \)-orthogonal complement of the exact forms inside the space of closed forms is now:

\[
\mathcal{H}_N^p(M) := \{ \omega \in \Omega^p(M) : d\omega = 0, \delta\omega = 0, i^*\#\omega = 0 \}.
\]
Suppose dx_n corresponds to the normal direction.

If $i^* \star \omega = 0$, then
Suppose dx_n corresponds to the normal direction. If $i^* \star \omega = 0$, then

$$\star \omega = \left(\sum f_i \, dx_i \right) \wedge dx_n,$$

meaning that ω has no dx_n in it. If $i^* \star \omega = 0$, then ω is said to satisfy the Neumann boundary condition.
Suppose dx_n corresponds to the normal direction.

If $i^* \star \omega = 0$, then

$$\star \omega = \left(\sum f_l dx_l \right) \wedge dx_n,$$

meaning that ω has no dx_n in it.
Suppose dx_n corresponds to the normal direction.

If $i^* \star \omega = 0$, then
\[
\star \omega = \left(\sum f_i dx_i \right) \wedge dx_n,
\]
meaning that ω has no dx_n in it.

If $i^* \star \omega = 0$, then ω is said to satisfy the *Neumann boundary condition.*
Define $i : \partial M \hookrightarrow M$ to be the natural inclusion.

The L^2-orthogonal complement of the exact forms inside the space of closed forms is now:

$$
\mathcal{H}_N^p(M) := \{ \omega \in \Omega^p(M) : d\omega = 0, \delta \omega = 0, i^* \star \omega = 0 \}.
$$
Define $i : \partial M \hookrightarrow M$ to be the natural inclusion.

The L^2-orthogonal complement of the exact forms inside the space of closed forms is now:

$$\mathcal{H}_N^p(M) := \{\omega \in \Omega^p(M) : d\omega = 0, \delta\omega = 0, i^* \star \omega = 0\}.$$

Then

$$H^p(M; \mathbb{R}) \cong \mathcal{H}_N^p(M).$$
The relative cohomology appears as

\[H^p(M, \partial M; \mathbb{R}) \cong \mathcal{H}^p_D(M). \]
The relative cohomology appears as

\[H^p(M, \partial M; \mathbb{R}) \cong \mathcal{H}_D^p(M). \]

\[\mathcal{H}_D^p(M) := \{ \omega \in \Omega^p(M) : d\omega = 0, \delta \omega = 0, i^*\omega = 0 \}. \]
The relative cohomology appears as

\[H^p(M, \partial M; \mathbb{R}) \cong \mathcal{H}^p_D(M). \]

\[\mathcal{H}^p_D(M) := \{ \omega \in \Omega^p(M) : d\omega = 0, \delta\omega = 0, i^*\omega = 0 \}. \]

If \(i^*\omega = 0 \), then \(\omega \) is said to satisfy the *Dirichlet boundary condition*.
The concrete realizations of $H^p(M; \mathbb{R})$ and $H^p(M, \partial M; \mathbb{R})$ meet only at the origin:

$$H^p_N(M) \cap H^p_D(M) = \{0\}$$
The concrete realizations of $H^p(M; \mathbb{R})$ and $H^p(M, \partial M; \mathbb{R})$ meet only at the origin:

$$H^p_N(M) \cap H^p_D(M) = \{0\}$$

...but they are not orthogonal!
Non-orthogonality

The concrete realizations of $H^p(M; \mathbb{R})$ and $H^p(M, \partial M; \mathbb{R})$ meet only at the origin:

$$\mathcal{H}^p_N(M) \cap \mathcal{H}^p_D(M) = \{0\}$$

...but they are not orthogonal!
Interior and boundary subspaces

Interior subspace of $\mathcal{H}_N^p(M)$:

$$\ker i^* \text{ where } i^* : H^p(M; \mathbb{R}) \to H^p(\partial M; \mathbb{R})$$
Interior and boundary subspaces

Interior subspace of $\mathcal{H}_N^p(M)$:

$$\ker i^* \text{ where } i^*: H^p(M; \mathbb{R}) \to H^p(\partial M; \mathbb{R})$$

$$\mathcal{E}_{\partial} \mathcal{H}_N^p(M) := \{ \omega \in \mathcal{H}_N^p(M) : i^*\omega = d\varphi, \varphi \in \Omega^{p-1}(\partial M) \}.$$
Interior and boundary subspaces

Interior subspace of $\mathcal{H}^p_N(M)$:

$$\ker i^* \text{ where } i^* : H^p(M; \mathbb{R}) \rightarrow H^p(\partial M; \mathbb{R})$$

$$E_{\partial} \mathcal{H}^p_N(M) := \{ \omega \in \mathcal{H}^p_N(M) : i^* \omega = d \varphi, \varphi \in \Omega^{p-1}(\partial M) \}.$$

Interior subspace of $\mathcal{H}^p_D(M)$:

$$\ast E_{\partial} \mathcal{H}^{n-p}_N(M) = c E_{\partial} \mathcal{H}^p_D(M)$$

$$= \{ \eta \in \mathcal{H}^p_D(M) : i^* \ast \eta = d \psi, \psi \in \Omega^{n-p-1}(\partial M) \}.$$
The Poincaré duality angles of the Riemannian manifold M are the principal angles between the interior subspaces.

Definition (DeTurck–Gluck)

The *Poincaré duality angles* of the Riemannian manifold M are the principal angles between the interior subspaces.
What do the Poincaré duality angles tell you?

Guess

If M is “almost” closed, the Poincaré duality angles of M should be small.
Consider \mathbb{CP}^2 with its usual Fubini-Study metric. Let $p \in \mathbb{CP}^2$. Then define

$$M_r := \mathbb{CP}^2 - B_r(p).$$
Consider \mathbb{CP}^2 with its usual Fubini-Study metric. Let $p \in \mathbb{CP}^2$. Then define

$$M_r := \mathbb{CP}^2 - B_r(p).$$
∂M_r is a 3-sphere.
\∂M_r is a 3-sphere.

\(M_r\) is the \(D^2\)-bundle over \(\mathbb{C}P^1 (\simeq S^2(1/2))\) with Euler characteristic 1.
\(\partial M_r \) is a 3-sphere.

\(M_r \) is the \(D^2 \)-bundle over \(\mathbb{CP}^1 \) \((\simeq S^2(1/2))\) with Euler characteristic 1.

\(M_r \) has absolute cohomology in dimensions 0 and 2.
∂M_r is a 3-sphere.

M_r is the D^2-bundle over \mathbb{CP}^1 ($\cong S^2(1/2)$) with Euler characteristic 1.

M_r has absolute cohomology in dimensions 0 and 2.

M_r has relative cohomology in dimensions 2 and 4.
∂M_r is a 3-sphere.

M_r is the D^2-bundle over $\mathbb{C}P^1 (\simeq S^2(1/2))$ with Euler characteristic 1.

M_r has absolute cohomology in dimensions 0 and 2.

M_r has relative cohomology in dimensions 2 and 4.

Therefore, M_r has a single Poincaré duality angle θ_r between $H^2_N(M_r)$ and $H^2_D(M_r)$.
So the goal is to find closed and co-closed 2-forms on M_r which satisfy Neumann and Dirichlet boundary conditions.
So the goal is to find closed and co-closed 2-forms on M_r which satisfy Neumann and Dirichlet boundary conditions.

Such 2-forms must be isometry-invariant.
So the goal is to find closed and co-closed 2-forms on M_r which satisfy Neumann and Dirichlet boundary conditions.

Such 2-forms must be isometry-invariant.

$$\text{Isom}_0(M_r) = SU(2).$$
Find harmonic 2-fields

So the goal is to find closed and co-closed 2-forms on M_r which satisfy Neumann and Dirichlet boundary conditions.

Such 2-forms must be isometry-invariant.

$$\text{Isom}_0(M_r) = SU(2).$$

Find closed and co-closed $SU(2)$-invariant forms on M_r satisfying Neumann and Dirichlet boundary conditions.
Finding isometry-invariant 2-forms

The hypersurfaces at constant distance t from \mathbb{CP}^1 are Berger 3-spheres: $S^3(\cos t, \sin t)$.

Diagram:
- \mathbb{CP}^1 circle
- Point p at $\pi/2$ from \mathbb{CP}^1
The hypersurfaces at constant distance t from \mathbb{CP}^1 are Berger 3-spheres:

$$S^3(\cos t)\sin t$$
The Poincaré duality angle for M_r

\[
\cos \theta_r = \frac{1 - \sin^4 r}{1 + \sin^4 r}.
\]
The Poincaré duality angle for M_r

\[
\cos \theta_r = \frac{1 - \sin^4 r}{1 + \sin^4 r}.
\]

As $r \to 0$, the Poincaré duality angle $\theta_r \to 0$.
The Poincaré duality angle for M_r

$$\cos \theta_r = \frac{1 - \sin^4 r}{1 + \sin^4 r}.$$

As $r \to 0$, the Poincaré duality angle $\theta_r \to 0$.

As $r \to \pi/2$, $\theta_r \to \pi/2$.
The Poincaré duality angle for M_r

$$\cos \theta_r = \frac{1 - \sin^4 r}{1 + \sin^4 r}.$$

As $r \to 0$, the Poincaré duality angle $\theta_r \to 0$.

As $r \to \pi/2$, $\theta_r \to \pi/2$.

Generalizes to $\mathbb{CP}^n - B_r(p)$.

Poincaré duality angles of Grassmannians

Consider

\[N_r := G_2 \mathbb{R}^n - \nu_r(G_1 \mathbb{R}^{n-1}). \]
Consider

\[N_r := G_2 \mathbb{R}^n - \nu_r(G_1 \mathbb{R}^{n-1}). \]

Theorem

- As \(r \to 0 \), all the Poincaré duality angles of \(N_r \) go to zero.
- As \(r \) approaches its maximum value of \(\pi/2 \), all the Poincaré duality angles of \(N_r \) go to \(\pi/2 \).
Conjecture

If \(M^n \) is a closed Riemannian manifold and \(N^k \) is a closed submanifold of codimension \(\geq 2 \), the Poincaré duality angles of

\[
M - \nu_r(N)
\]

go to zero as \(r \to 0 \).
What can you learn about the topology of M from knowledge of ∂M?
Induce potentials on the boundary of a region and determine the conductivity inside the region by measuring the current flux through the boundary.
Electrical Impedance Tomography

Induce potentials on the boundary of a region and determine the conductivity inside the region by measuring the current flux through the boundary.
Suppose f is a potential on the boundary of a region $M \subset \mathbb{R}^3$.
Suppose \(f \) is a potential on the boundary of a region \(M \subset \mathbb{R}^3 \).

Then \(f \) extends to a potential \(u \) on \(M \), where

\[
\Delta u = 0, \quad u|_{\partial M} = f.
\]
Suppose f is a potential on the boundary of a region $M \subset \mathbb{R}^3$.

Then f extends to a potential u on M, where

$$\Delta u = 0, \quad u|_{\partial M} = f.$$

If γ is the conductivity on M, the current flux through ∂M is given by

$$(\gamma \nabla u) \cdot \nu = -\gamma \frac{\partial u}{\partial \nu}$$
The map $\Lambda_{\text{cl}} : C^\infty(\partial M) \to C^\infty(\partial M)$ defined by

$$f \mapsto \frac{\partial u}{\partial \nu}$$

is the classical *Dirichlet-to-Neumann map*.
The map $\Lambda_{cl} : C^\infty(\partial M) \to C^\infty(\partial M)$ defined by

$$f \mapsto \frac{\partial u}{\partial \nu}$$

is the classical *Dirichlet-to-Neumann map*.

Theorem (Lee-Uhlmann)

*If M^n is a compact, analytic Riemannian manifold with boundary, then M is determined up to isometry by Λ_{cl}.***
Joshi–Lionheart and Belishev–Sharafutdinov generalized the classical Dirichlet-to-Neumann map to differential forms:

$$\Lambda : \Omega^p(\partial M) \to \Omega^{n-p-1}(\partial M)$$
Generalization to differential forms

Joshi–Lionheart and Belishev–Sharafutdinov generalized the classical Dirichlet-to-Neumann map to differential forms:

\[\Lambda : \Omega^p(\partial M) \rightarrow \Omega^{n-p-1}(\partial M) \]

If \(\varphi \in \Omega^p(\partial M) \), then let \(\omega \) solve the boundary value problem

\[\Delta \omega = 0, \quad i^* \omega = \varphi, \quad i^* \delta \omega = 0. \]
Joshi–Lionheart and Belishev–Sharafutdinov generalized the classical Dirichlet-to-Neumann map to differential forms:

\[\Lambda : \Omega^p(\partial M) \to \Omega^{n-p-1}(\partial M) \]

If \(\varphi \in \Omega^p(\partial M) \), then let \(\omega \) solve the boundary value problem

\[\Delta \omega = 0, \quad i^* \omega = \varphi, \quad i^* \delta \omega = 0. \]

Define

\[\Lambda \varphi := i^* \ast d\omega. \]
Joshi–Lionheart and Belishev–Sharafutdinov generalized the classical Dirichlet-to-Neumann map to differential forms:

$$\Lambda : \Omega^p(\partial M) \to \Omega^{n-p-1}(\partial M)$$

If $\varphi \in \Omega^p(\partial M)$, then let ω solve the boundary value problem

$$\Delta \omega = 0, \quad i^*\omega = \varphi, \quad i^*\delta \omega = 0.$$

Define

$$\Lambda \varphi := i^* \star d\omega.$$

If $f \in \Omega^0(\partial M)$,

$$\Lambda f = i^* \star du = \frac{\partial u}{\partial \nu} d\text{vol}_{\partial M} = (\Lambda_{\text{cl}} f) d\text{vol}_{\partial M}$$
Theorem (Belishev–Sharafutdinov)

The data \((\partial M, \Lambda)\) completely determines the cohomology groups of \(M\).
Define the *Hilbert transform* \(T := d\Lambda^{-1} \).
Define the Hilbert transform $T := d\Lambda^{-1}$.

Theorem

If $\theta_1, \ldots, \theta_k$ are the Poincaré duality angles of M in dimension p, then the quantities

$$(-1)^{np+n+p} \cos^2 \theta_i$$

are the non-zero eigenvalues of an appropriate restriction of T^2.

The Spectrum of T^2

\[\pm \cos^2 \theta_i; \]

Finitely many 0s

Infinitely many 1s
Theorem

\{\text{Interesting eigenvalues of } T^2\} \iff (-1)^{np+n+p} \cos^2 \theta;
Idea of the Proof

Theorem

\[
\{ \text{Interesting eigenvalues of } T^2 \} \leftrightarrow (-1)^{np+p} \cos^2 \theta_i
\]
Theorem
\{\text{Interesting eigenvalues of } T^2\} \leftrightarrow (-1)^{np+n+p} \cos^2 \theta_i

The Hilbert transform \(T \) recaptures the orthogonal projection \(\mathcal{H}_N^p(M) \to \mathcal{H}_D^p(M) \).
Belishev and Sharafutdinov posed the following question:

Can the multiplicative structure of cohomologies be recovered from our data $(\partial M, \Lambda)$? Till now, the authors cannot answer the question.
Belishev and Sharafutdinov posed the following question:

Can the multiplicative structure of cohomologies be recovered from our data \((\partial M, \Lambda)\)? Till now, the authors cannot answer the question.

Theorem

The mixed cup product

\[\cup : H^p(M; \mathbb{R}) \times H^q(M, \partial M; \mathbb{R}) \rightarrow H^{p+q}(M, \partial M; \mathbb{R}) \]

is completely determined by the data \((\partial M, \Lambda)\) when the relative class is restricted to come from the boundary subspace.
Thanks!