Introduction II: The Symplectic Geometry of Polygon Space and How to Use It

Clayton Shonkwiler

Colorado State University

Simons Center for Geometry and Physics

October 12, 2015
In his talk, Jason described a model for closed, relatively framed polygons in \mathbb{R}^3 of total length 2 based on the Grassmannian $G_2(\mathbb{C}^n)$. How to specialize to unframed polygons with fixed edgelengths (for example, equilateral polygons)? $G_2(\mathbb{C}^n)$ is an assembly of fixed edge length spaces.
In his talk, Jason described a model for closed, relatively framed polygons in \mathbb{R}^3 of total length 2 based on the Grassmannian $G_2(\mathbb{C}^n)$.

How to specialize to unframed polygons with fixed edgelengths (for example, equilaterial polygons)?
In his talk, Jason described a model for closed, relatively framed polygons in \mathbb{R}^3 of total length 2 based on the Grassmannian $G_2(\mathbb{C}^n)$.

How to specialize to unframed polygons with fixed edgelengths (for example, equilateral polygons)?

(one edge of length 1 \implies volume = 0)

$G_2(\mathbb{C}^n)$ is an assembly of fixed edge length spaces

(equilaterals are largest volume)
Random Polygons and Ring Polymers

Statistical Physics Point of View

A ring polymer in solution takes on an ensemble of random shapes, with topology (knot type!) as the unique conserved quantity.

Knotted DNA
Wassermann et al.
Science 229, 171–174

DNA Minicircle simulation
Harris Lab
University of Leeds, UK

The basic paradigm is to model these by standard random walks conditioned on closure; i.e., equilateral random polygons.
Three main goals for this talk:

1. Describe how the moduli spaces of fixed edgelength polygons connects with the Grassmannian story.

2. Use symplectic geometry to find nice coordinates on equilateral polygon space.

3. Give a direct sampling algorithm which generates a random equilateral n-gon in $O(n^{5/2})$ time.
The Edgelength Map

We can define the *edgelength map* \(\mathcal{E} : G_2(\mathbb{C}^n) \to \Delta_{n,2} \) from the Grassmannian to the second hypersimplex

\[
\Delta_{n,2} = \left\{ (r_1, \ldots, r_n) \in [0, 1]^n : \sum r_i = 2 \right\}.
\]
We can define the *edgelength map* \(\mathcal{E} : G_2(\mathbb{C}^n) \to \Delta_{n,2} \) from the Grassmannian to the second hypersimplex

\[
\Delta_{n,2} = \left\{ (r_1, \ldots, r_n) \in [0, 1]^n : \sum r_i = 2 \right\}.
\]

Specifically, if we represent elements of \(G_2(\mathbb{C}^n) \) by \(n \times 2 \) complex matrices where the columns give an orthonormal basis for the 2-plane, then:

\[
\mathcal{E} : \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \\ \vdots & \vdots \\ a_n & b_n \end{pmatrix} \mapsto \begin{pmatrix} |a_1|^2 + |b_1|^2 \\ |a_2|^2 + |b_2|^2 \\ \vdots \\ |a_n|^2 + |b_n|^2 \end{pmatrix}
\]
For any point $\vec{r} = (r_1, \ldots, r_n) \in \Delta_{n,2}$, the space of framed n-gons in \mathbb{R}^3 with edgelengths r_1, \ldots, r_n up to translation and rotation is the inverse image

$$\mathcal{E}^{-1}(\vec{r}) \subset G_2(\mathbb{C}^n).$$
For any point \(\vec{r} = (r_1, \ldots, r_n) \in \Delta_{n,2} \), the space of framed \(n \)-gons in \(\mathbb{R}^3 \) with edgelengths \(r_1, \ldots, r_n \) up to translation and rotation is the inverse image

\[E^{-1}(\vec{r}) \subset G_2(\mathbb{C}^n). \]

If we want unframed polygons with fixed edgelengths, we should divide \(E^{-1}(\vec{r}) \) by the \(U(1)^n \) which spins the individual edge frames:

\[\widehat{\text{Pol}}(n; \vec{r}) = E^{-1}(\vec{r})/U(1)^n. \]
For any point $\vec{r} = (r_1, \ldots, r_n) \in \Delta_{n,2}$, the space of framed n-gons in \mathbb{R}^3 with edgelengths r_1, \ldots, r_n up to translation and rotation is the inverse image

$$E^{-1}(\vec{r}) \subset G_2(\mathbb{C}^n).$$

If we want unframed polygons with fixed edgelengths, we should divide $E^{-1}(\vec{r})$ by the $U(1)^n$ which spins the individual edge frames:

$$\hat{\text{Pol}}(n; \vec{r}) = E^{-1}(\vec{r})/U(1)^n.$$

In fact, the diagonal subgroup $D \subset U(1)^n$ has no effect on relatively framed polygons, so we should really divide by the effective action of $U(1)^n/D \simeq U(1)^{n-1}$.

For any point $\vec{r} = (r_1, \ldots, r_n) \in \Delta_{n,2}$, the space of framed n-gons in \mathbb{R}^3 with edgelengths r_1, \ldots, r_n up to translation and rotation is the inverse image

$$\mathcal{E}^{-1}(\vec{r}) \subset G_2(\mathbb{C}^n).$$

If we want unframed polygons with fixed edgelengths, we should divide $\mathcal{E}^{-1}(\vec{r})$ by the $U(1)^n$ which spins the individual edge frames:

$$\widehat{\text{Pol}}(n; \vec{r}) = \mathcal{E}^{-1}(\vec{r})/U(1)^{n-1}.$$

In fact, the diagonal subgroup $\mathcal{D} \subset U(1)^n$ has no effect on relatively framed polygons, so we should really divide by the effective action of $U(1)^n/\mathcal{D} \simeq U(1)^{n-1}$.
$G_2(\mathbb{C}^n)$

$\mathcal{E}^{-1}(\vec{r})$

$\left\lfloor U(1)^{n-1} \right\rfloor \rightarrow \text{Pol}(n; \vec{r})$
\(\mathbb{C}^2 \) \(n \) \(\mathbb{C}^n \)

\(V_2(\mathbb{C}^n) \)/\(U(2) \)

\(G_2(\mathbb{C}^n) \)

\(\mathcal{E}^{-1}(\vec{r}) \)/\(U(1)^{n-1} \) \(\widehat{\text{Pol}}(n; \vec{r}) \)
\[(\mathbb{C}^2)^n \supseteq G_2(\mathbb{C}^n) \]

\[\mathcal{E}^{-1}(\vec{r}) = \prod S^3(r_i)\]

\[\mathcal{E}^{-1}(\vec{r}) \supseteq \text{Pol}(n; \vec{r})\]

\[G_2(\mathbb{C}^n) \lor U(2)\]

\[\text{Pol}(n; \vec{r}) \lor U(1)^n\]

\[\prod S^2(r_i)\]

\[\text{Pol}(n; \vec{r}) \lor \text{SO}(3)\]

\[\langle \rangle \lor \text{Pol}(n; \vec{r})\]
The Big Symplectic Picture

\[\mathbb{C}^2 \times \mathbb{C}^n / / \mathbb{R} \mathbb{U}(1)^n \]

\[G_2(\mathbb{C}^n) \]

\[\mathbb{C}^2 \times \mathbb{C}^n / / \mathbb{R} \mathbb{U}(2) \]

\[\mathbb{R} \mathbb{U}(1)^n \]

\[\mathbb{R} \mathbb{U}(1)^n - 1 \]

\[\mathbb{R} \mathbb{SO}(3) \]

\[\Pi S^2(r_i) \]

\[\mathbb{Sph}(n; \vec{r}) \]
A symplectic manifold \((M, \omega)\) is a smooth \(2n\)-dimensional manifold \(M\) with a closed, non-degenerate 2-form \(\omega\) called the \textit{symplectic form}. The \(n\)th power of this form \(\omega^n = \omega \wedge \ldots \wedge \omega\) is a volume form on \(M\).
A symplectic manifold \((M, \omega)\) is a smooth \(2n\)-dimensional manifold \(M\) with a closed, non-degenerate 2-form \(\omega\) called the \textit{symplectic form}. The \(n\)th power of this form \(\omega^n = \omega \wedge \ldots \wedge \omega\) is a volume form on \(M\).

The circle \(U(1)\) \textit{acts by symplectomorphisms} on \(M\) if the action preserves \(\omega\). A circle action generates a vector field \(X\) on \(M\). We can contract the vector field \(X\) with \(\omega\) to generate a one-form:

\[
\iota_X \omega (\vec{v}) = \omega (X, \vec{v})
\]

If \(\iota_X \omega\) is exact, meaning it is \(dH\) for some smooth function \(H\) on \(M\), the action is called \textit{Hamiltonian}. The function \(H\) is called the \textit{momentum} associated to the action, or the \textit{moment map}.
A torus $T^k = U(1)^k$ which acts by symplectomorphisms on M so that each circle action is Hamiltonian induces a moment map $\mu : M \to \mathbb{R}^k$ where the action preserves the fibers (inverse images of points).

Theorem (Atiyah, Guillemin–Sternberg, 1982)

The image of μ is a convex polytope in \mathbb{R}^k called the moment polytope.

Theorem (Duistermaat–Heckman, 1982)

The pushforward of the symplectic measure to the moment polytope is piecewise polynomial. If $k = n = \frac{1}{2} \dim(M)$, then the manifold is called a toric symplectic manifold and the pushforward measure is Lebesgue measure on the polytope.
Let \((M, \omega)\) be the 2-sphere with the standard area form. Let \(U(1)\) act by rotation around the \(z\)-axis. Then the moment polytope is the interval \([-1, 1]\), and \(S^2\) is a toric symplectic manifold.

Theorem (Archimedes, Duistermaat–Heckman)

The pushforward of the standard measure on the sphere to the interval is \(2\pi\) times Lebesgue measure.

Illustration by Kuperberg.
Action-Angle Coordinates are Cylindrical Coordinates

\[(z, \theta) \rightarrow (\sqrt{1 - z^2} \cos \theta, \sqrt{1 - z^2} \sin \theta, z)\]

Corollary

This map pushes the standard probability measure on \([-1, 1] \times S^1\) forward to the correct probability measure on \(S^2\).
Theorem (Marsden–Weinstein, Meyer)

If \(G \) is a \(g \)-dimensional compact Lie group which acts in a Hamiltonian fashion on the symplectic manifold \((M, \omega)\) with associated moment map \(\mu : M \to \mathbb{R}^g \), then for any \(\vec{v} \) in the moment polytope so that the action of \(G \) preserves the fiber \(\mu^{-1}(\vec{v}) \subset M \), the quotient

\[
M \sslash _{\vec{v}} G := \frac{\mu^{-1}(\vec{v})}{G}
\]

has a natural symplectic structure induced by \(\omega \). The manifold \(M \sslash _{\vec{v}} G \) is called the symplectic reduction of \(M \) by \(G \) (over \(\vec{v} \)).
The Big Symplectic Picture (repeated)

\[
\begin{align*}
\mathbb{C}^2 \times G_2(\mathbb{C}^n) & \xrightarrow{\oplus \mathbb{U}(2)} (\mathbb{C}^2)^n \\
\mathbb{C}^n & \xrightarrow{\oplus \mathbb{U}(1)^n} (\mathbb{C}^2)^n \\
\prod S^2(r_i) & \xrightarrow{\oplus \mathbb{SO}(3)} \mathbb{U}(1)^{n-1} \\
\text{Pol}(n; \vec{r}) & \xrightarrow{\oplus \mathbb{U}(1)^{n-1}} G_2(\mathbb{C}^n)
\end{align*}
\]
The Big Algebraic Geometry Picture

The virtue of this view is that on open dense subsets you can traverse down the diagram by way of quotient maps.

Question: What is the pushforward measure from $G_2(\mathbb{C}^n)$ or $\prod (\mathbb{CP}^1)^n$ to $\hat{\text{Pol}}(n; \vec{r})$?
The virtue of this view is that on open dense subsets you can traverse down the diagram by way of quotient maps.

Question: What is the pushforward measure from $G_2(C^n)\prod (CP^1)^n$ to $\hat{\text{Pol}}(n; \vec{r})$?
The Big Algebraic Geometry Picture

The virtue of this view is that on open dense subsets you can traverse down the diagram by way of quotient maps.

Question

What is the pushforward measure from $G_2(\mathbb{C}^n)$ or $\prod(\mathbb{CP}^1)^n$ to $\hat{\text{Pol}}(n; \vec{r})$?
A Closed Random Walk with 3,500 Steps
Interpreting the Right Half of the Diagram

We can interpret $S^2(r_1) \times \ldots \times S^2(r_n)$ as the moduli space of random walks in \mathbb{R}^3 with fixed edgelengths r_1, \ldots, r_n up to translation. This is a symplectic manifold.
Interpreting the Right Half of the Diagram

We can interpret $S^2(r_1) \times \ldots \times S^2(r_n)$ as the moduli space of random walks in \mathbb{R}^3 with fixed edgelengths r_1, \ldots, r_n up to translation. This is a symplectic manifold.

The diagonal $SO(3)$ action is *area-preserving* on each factor, so this action is by symplectomorphisms. In fact, the action is Hamiltonian with corresponding moment map

$\mu : S^2(r_1) \times \ldots \times S^2(r_n) \to \mathbb{R}^3$ given by

$$\mu(\vec{e}_1, \ldots, \vec{e}_n) = \sum \vec{e}_i.$$
Interpreting the Right Half of the Diagram

We can interpret $S^2(r_1) \times \ldots \times S^2(r_n)$ as the moduli space of random walks in \mathbb{R}^3 with fixed edgelengths r_1, \ldots, r_n up to translation. This is a symplectic manifold.

The diagonal $SO(3)$ action is \textit{area-preserving} on each factor, so this action is by symplectomorphisms. In fact, the action is Hamiltonian with corresponding moment map

\[\mu : S^2(r_1) \times \ldots \times S^2(r_n) \to \mathbb{R}^3 \]

given by

\[\mu(\vec{e}_1, \ldots, \vec{e}_n) = \sum \vec{e}_i. \]

Therefore, the space $\widehat{\text{Pol}}(n; \vec{r})$ of closed polygons up to translation and rotation is equal to

\[\mu^{-1}(\vec{0})/SO(3) = \left(S^2(r_1) \times \ldots \times S^2(r_n) \right) \sslash_{\vec{0}} SO(3). \]
Given an (abstract) triangulation of the \(n \)-gon, the folds on any two chords commute. Thus, rotating around all \(n - 3 \) of these chords by independently selected angles defines a \(T^{n-3} \) action on \(\widehat{\text{Pol}}(n; \vec{r}) \) which preserves the chord lengths.
Given an (abstract) triangulation of the n-gon, the folds on any two chords commute. Thus, rotating around all $n - 3$ of these chords by independently selected angles defines a T^{n-3} action on $\widehat{\text{Pol}}(n; \vec{r})$ which preserves the chord lengths.

This action turns out to be Hamiltonian. Since the chordlengths d_1, \ldots, d_{n-3} are the conserved quantities, the corresponding moment map is $\delta : \widehat{\text{Pol}}(n; \vec{r}) \to \mathbb{R}^{n-3}$ given by

$$\delta(P) = (d_1, \ldots, d_{n-3}).$$
The Triangulation Polytope

Definition
An abstract triangulation T of an n-gon picks out $n - 3$ nonintersecting chords. The lengths of these chords obey triangle inequalities, so they lie in a convex polytope in \mathbb{R}^{n-3} called the *triangulation polytope* $\mathcal{P}_n(\vec{r})$.
Definition
An abstract triangulation T of an n-gon picks out $n - 3$ nonintersecting chords. The lengths of these chords obey triangle inequalities, so they lie in a convex polytope in \mathbb{R}^{n-3} called the *triangulation polytope* $\mathcal{P}_n(\vec{r})$.

\begin{align*}
 d_1 + d_2 &\geq 1 \\
d_2 &\leq d_1 + 1 \\
d_1 &\leq 2 \\
d_2 &\leq 2 \\
d_1 &\leq d_2 + 1
\end{align*}
Definition
An abstract triangulation T of an n-gon picks out $n - 3$ nonintersecting chords. The lengths of these chords obey triangle inequalities, so they lie in a convex polytope in \mathbb{R}^{n-3} called the triangulation polytope $\mathcal{P}_n(\vec{r})$.

$\begin{align*}
(0, 2, 2) \\
(2, 0, 2) \\
(2, 2, 0) \\
(0, 0, 0)
\end{align*}$
Definition

If $\mathcal{P}_n(\vec{r})$ is the triangulation polytope and T^{n-3} is the torus of $n - 3$ dihedral angles, then there are *action-angle coordinates*:

$$\alpha: \mathcal{P}_n(\vec{r}) \times T^{n-3} \to \widehat{\text{Pol}}(n; \vec{r})$$
Theorem (with Cantarella)

α pushes the **standard probability measure** on $P_n(\vec{r}) \times T^{n-3}$ forward to the **correct probability measure** on $\hat{\text{Pol}}(n; \vec{r})$.
Theorem (with Cantarella)

α pushes the **standard probability measure** on $\mathcal{P}_n(\vec{r}) \times T^{n-3}$ forward to the **correct probability measure** on $\hat{\text{Pol}}(n; \vec{r})$.

Ingredients of the Proof.

Kapovich–Millson toric symplectic structure on polygon space + Duistermaat–Heckman theorem + Hitchin’s theorem on compatibility of Riemannian and symplectic volume on symplectic reductions of Kähler manifolds + Howard–Manon–Millson analysis of polygon space.
Theorem (with Cantarella)
\(\alpha \) pushes the \textbf{standard probability measure} on \(\mathcal{P}_n(\vec{r}) \times T^{n-3} \) forward to the \textbf{correct probability measure} on \(\hat{\text{Pol}}(n; \vec{r}) \).

Ingredients of the Proof.
Kapovich–Millson toric symplectic structure on polygon space + Duistermaat–Heckman theorem + Hitchin’s theorem on compatibility of Riemannian and symplectic volume on symplectic reductions of Kähler manifolds + Howard–Manon–Millson analysis of polygon space.

Corollary
Any sampling algorithm for \(\mathcal{P}_n(\vec{r}) \) is a sampling algorithm for closed polygons with edgelength vector \(\vec{r} \).
Proposition (with Cantarella)

The expected length of a chord skipping k edges in an n-edge equilateral polygon is the $(k - 1)$st coordinate of the center of mass of the moment polytope for $\text{Pol}(n; \vec{1})$.
Proposition (with Cantarella)

The expected length of a chord skipping \(k \) edges in an \(n \)-edge equilateral polygon is the \((k - 1)\)st coordinate of the center of mass of the moment polytope for \(\text{Pol}(n; \vec{1}) \).

<table>
<thead>
<tr>
<th></th>
<th>(n)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 5 | \(
\begin{array}{c}
17 \\
15
\end{array}
\) | \(
\begin{array}{c}
17 \\
15
\end{array}
\) | | | | | |
| 6 | \(
\begin{array}{c}
14 \\
12
\end{array}
\) | \(
\begin{array}{c}
15 \\
12
\end{array}
\) | \(
\begin{array}{c}
14 \\
12
\end{array}
\) | | | | | |
| 7 | \(
\begin{array}{c}
461 \\
385
\end{array}
\) | \(
\begin{array}{c}
506 \\
385
\end{array}
\) | \(
\begin{array}{c}
506 \\
385
\end{array}
\) | \(
\begin{array}{c}
461 \\
385
\end{array}
\) | | | | |
| 8 | \(
\begin{array}{c}
1,168 \\
960
\end{array}
\) | \(
\begin{array}{c}
1,307 \\
960
\end{array}
\) | \(
\begin{array}{c}
1,344 \\
960
\end{array}
\) | \(
\begin{array}{c}
1,307 \\
960
\end{array}
\) | \(
\begin{array}{c}
1,168 \\
960
\end{array}
\) | | | |
| 9 | \(
\begin{array}{c}
112,121 \\
91,035
\end{array}
\) | \(
\begin{array}{c}
127,059 \\
91,035
\end{array}
\) | \(
\begin{array}{c}
133,337 \\
91,035
\end{array}
\) | \(
\begin{array}{c}
133,337 \\
91,035
\end{array}
\) | \(
\begin{array}{c}
127,059 \\
91,035
\end{array}
\) | \(
\begin{array}{c}
112,121 \\
91,035
\end{array}
\) | | |
| 10 | \(
\begin{array}{c}
97,456 \\
78,400
\end{array}
\) | \(
\begin{array}{c}
111,499 \\
78,400
\end{array}
\) | \(
\begin{array}{c}
118,608 \\
78,400
\end{array}
\) | \(
\begin{array}{c}
120,985 \\
78,400
\end{array}
\) | \(
\begin{array}{c}
118,608 \\
78,400
\end{array}
\) | \(
\begin{array}{c}
111,499 \\
78,400
\end{array}
\) | \(
\begin{array}{c}
97,456 \\
78,400
\end{array}
\) | |
Proposition (with Cantarella)

The expected length of a chord skipping k edges in an n-edge equilateral polygon is the $(k - 1)^{st}$ coordinate of the center of mass of the moment polytope for $\text{Pol}(n; \vec{1})$.

$$E(\text{chord}(37, 112)) =$$

2586147629602481872372707134354784581828166239735638
002149884020577366687369964908185973277294293751533
821217655703978549111529802222311915321645998238455
195807966750595587484029858333822248095439325965569
561018977292296096419815679068203766009993261268626
7074180822275677495669153244706677550690707937136027
424519117786555575048213829170264569628637315477158
307368641045097103310496820323457318243992395055104

≈ 4.60973
Question

How to incorporate excluded volume into the model?
Excluded Volume?

Question
How to incorporate excluded volume into the model?
Excluded Volume?

Question

How to incorporate excluded volume into the model?

\[\left| \sum_{i=j}^{k} \mathbf{e}_i \right|^2 \geq \epsilon. \]
Proposition (with Cantarella)

At least \(\frac{1}{2} \) of the space of equilateral 6-edge polygons consists of unknots.
Proposition (with Cantarella)

At least \(\frac{1}{2} \) of the space of equilateral 6-edge polygons consists of unknots.

Despite the proposition, we observe experimentally that (with 95% confidence) between 1.1 and 1.5 in 10,000 hexagons are knotted.
Proposition (with Cantarella)

At least $\frac{1}{2}$ of the space of equilateral 6-edge polygons consists of unknots.

Despite the proposition, we observe experimentally that (with 95% confidence) between 1.1 and 1.5 in 10,000 hexagons are knotted.

How can we be so sure?
Sampling Algorithms for Equilateral Polygons:

- **Markov Chain Algorithms**
 - crankshaft (Vologoskii 1979, Klenin 1988)
 - polygonal fold (Millett 1994)

- **Direct Sampling Algorithms**
 - triangle method (Moore 2004)
 - generalized hedgehog method (Varela 2009)
 - sinc integral method (Moore 2005, Diao 2011)
Sampling Algorithms for Equilateral Polygons:

- **Markov Chain Algorithms**
 - crankshaft (Vologoskii et al. 1979, Klenin et al. 1988)
 - convergence to correct distribution unproved
 - polygonal fold (Millett 1994)
 - convergence to correct distribution unproved

- **Direct Sampling Algorithms**
 - triangle method (Moore et al. 2004)
 - samples a subset of closed polygons
 - generalized hedgehog method (Varela et al. 2009)
 - unproved whether this is correct distribution
 - requires sampling complicated 1-d polynomial densities
The polytope $\mathcal{P}_n = \mathcal{P}_n(\vec{1})$ corresponding to the “fan triangulation” is defined by the triangle inequalities:

\[
0 \leq d_1 \leq 2 \quad \quad \quad \quad \quad \quad \quad 1 \leq d_i + d_{i+1} \quad \quad \quad \quad \quad \quad \quad 0 \leq d_{n-3} \leq 2
\]

\[
|d_i - d_{i+1}| \leq 1
\]
A Change of Coordinates

If we introduce fake chordlength $d_0 = 1 = d_{n-2}$, and make the linear transformation

$$ s_i = d_i - d_{i-1}, \text{ for } 1 \leq i \leq n - 2 $$

then $\sum s_i = d_{n-2} - d_0 = 0$, so s_{n-2} is determined by s_1, \ldots, s_{n-3}
A Change of Coordinates

If we introduce fake chordlength $d_0 = 1 = d_{n-2}$, and make the linear transformation

$$s_i = d_i - d_{i-1}, \text{ for } 1 \leq i \leq n - 2$$

then $\sum s_i = d_{n-2} - d_0 = 0$, so s_{n-2} is determined by s_1, \ldots, s_{n-3} and the inequalities

$$0 \leq d_1 \leq 2 \quad 1 \leq d_i + d_{i+1} \quad |d_i - d_{i+1}| \leq 1 \quad 0 \leq d_{n-3} \leq 2$$

become

$$-1 \leq s_i \leq 1, \quad -1 \leq \sum_{i=1}^{n-3} s_i \leq 1, \quad \sum_{i=1}^{n-3} s_i \leq -1$$

$$\sum_{j=1}^{i} s_j + \sum_{j=1}^{i+1} s_j \geq -1 \quad |d_i - d_{i+1}| \leq 1 \quad d_i + d_{i+1} \geq 1$$
If we introduce fake chordlength $d_0 = 1 = d_{n-2}$, and make the linear transformation

$$s_i = d_i - d_{i-1}, \text{ for } 1 \leq i \leq n-2$$

then $\sum s_i = d_{n-2} - d_0 = 0$, so s_{n-2} is determined by s_1, \ldots, s_{n-3} and the inequalities

$$0 \leq d_1 \leq 2 \quad 1 \leq d_i + d_{i+1} \quad 0 \leq |d_i - d_{i+1}| \leq 1 \quad 0 \leq d_{n-3} \leq 2$$

become

$$-1 \leq s_i \leq 1, \quad -1 \leq \sum_{i=1}^{n-3} s_i \leq 1,$$

$$\sum_{j=1}^{i} s_j + \sum_{j=1}^{i+1} s_j \geq -1$$

\begin{itemize}
 \item easy conditions
 \item hard conditions
\end{itemize}
Definition

The \((n - 3)\)-dimensional polytope \(Q_n\) is the slab of the hypercube \([-1, 1]^{n-3}\) determined by \(-1 \leq s_1 + \ldots + s_{n-3} \leq 1\).
Basic Idea

Definition
The \((n - 3)\)-dimensional polytope \(Q_n\) is the slab of the hypercube \([-1, 1]^{n-3}\) determined by \(-1 \leq s_1 + \ldots + s_{n-3} \leq 1\).

\[C_5 \]

Idea
Sample points in \(Q_n\), which all obey the “easy conditions”, and reject any samples which fail to obey the “hard conditions”.
Definition
The \((n - 3)\)-dimensional polytope \(Q_n\) is the slab of the hypercube \([-1, 1]^{n-3}\) determined by \(-1 \leq s_1 + \ldots + s_{n-3} \leq 1\).

Idea
Sample points in \(Q_n\), which all obey the “easy conditions”, and reject any samples which fail to obey the “hard conditions”.

\(Q_6\)
Definition

The $(n - 3)$-dimensional polytope Q_n is the slab of the hypercube $[-1, 1]^{n-3}$ determined by $-1 \leq s_1 + \ldots + s_{n-3} \leq 1$.

Idea

Sample points in Q_n, which all obey the “easy conditions”, and reject any samples which fail to obey the “hard conditions”.
Relative volumes

Theorem (Marichal–Mossinghoff)

The volume of Q_n is

$$\frac{\sqrt{n-2}}{(n-3)!} \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{n-2}{k} (n-2k-2)^{n-3}$$

Theorem (Khoi, Takakura, Mandini)

The volume of C_n is

$$\frac{\sqrt{n-2}}{2(n-3)!} \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^{k+1} \binom{n}{k} (n-2k)^{n-3}$$
Runtime of algorithm depends on acceptance ratio

Acceptance ratio \(\frac{\text{Vol}(C_n)}{\text{Vol}(Q_n)} \) is conjectured \(\approx \frac{6}{n} \). It is certainly bounded below by \(\frac{1}{n} \).

graph of \(\frac{6}{n} \) (in red)
Acceptance ratio \(\frac{\text{Vol}(C_n)}{\text{Vol}(Q_n)} \) is conjectured \(\approx \frac{6}{n} \). It is certainly bounded below by \(\frac{1}{n} \).

\[\text{graph of } \frac{6}{n} \text{ (in red)} \]

Moral

This approach is reasonable if we can sample \(Q_n \) efficiently.
We can sample Q_n by rejection sampling $[-1, 1]^{n-3}$. The acceptance probability is

$$\frac{\text{Vol } Q_n}{\text{Vol}[-1, 1]^{n-3}}.$$
We can sample Q_n by rejection sampling $[-1, 1]^{n-3}$. The acceptance probability is

$$\frac{\text{Vol } Q_n}{\text{Vol}[-1, 1]^{n-3}}.$$

But this is just the probability that a sum of $n - 3$ independent Uniform([-1, 1]) variates is between −1 and 1.
We can sample Q_n by rejection sampling $[-1, 1]^{n-3}$. The acceptance probability is

$$\frac{\text{Vol } Q_n}{\text{Vol}[−1, 1]^{n-3}}.$$

But this is just the probability that a sum of $n - 3$ independent Uniform($[-1, 1]$) variates is between -1 and 1.

\begin{align*}
n &= 4 \\
\mathbb{P}(−1 \leq \sum s_i \leq 1) &= 1
\end{align*}
We can sample Q_n by rejection sampling $[-1, 1]^{n-3}$. The acceptance probability is

$$\frac{\text{Vol } Q_n}{\text{Vol}[-1, 1]^{n-3}}.$$

But this is just the probability that a sum of $n-3$ independent Uniform([-1, 1]) variates is between -1 and 1.

For $n = 5$,

$$P(-1 \leq \sum s_i \leq 1) = \frac{3}{4}$$
We can sample Q_n by rejection sampling $[-1, 1]^{n-3}$. The acceptance probability is

$$\frac{\text{Vol } Q_n}{\text{Vol}[-1, 1]^{n-3}}.$$

But this is just the probability that a sum of $n - 3$ independent Uniform$([-1, 1])$ variates is between -1 and 1.

$n = 6$

$$\mathbb{P}(-1 \leq \sum s_i \leq 1) = \frac{2}{3}$$
We can sample Q_n by rejection sampling $[-1, 1]^{n-3}$. The acceptance probability is

$$\frac{\text{Vol } Q_n}{\text{Vol }[-1, 1]^{n-3}}.$$

But this is just the probability that a sum of $n - 3$ independent Uniform$([-1, 1])$ variates is between -1 and 1.

\[n = 7 \]

\[\mathbb{P}(-1 \leq \sum s_i \leq 1) = \frac{115}{192} \]
We can sample Q_n by rejection sampling $[-1, 1]^{n-3}$. The acceptance probability is

$$\frac{\text{Vol } Q_n}{\text{Vol } [-1, 1]^{n-3}}.$$

But this is just the probability that a sum of $n - 3$ independent Uniform([-1, 1]) variates is between -1 and 1.

\[n = 8 \]

\[P(-1 \leq \sum s_i \leq 1) = \frac{11}{20} \]
We can sample Q_n by rejection sampling $[-1, 1]^{n-3}$. The acceptance probability is

$$\frac{\text{Vol } Q_n}{\text{Vol}[-1, 1]^{n-3}}.$$

But this is just the probability that a sum of $n - 3$ independent Uniform($[-1, 1]$) variates is between -1 and 1.

$n = 100$

$$\mathbb{P}(-1 \leq \sum s_i \leq 1) \approx 0.13938$$
We can sample Q_n by rejection sampling $[-1, 1]^{n-3}$. The acceptance probability is

$$\frac{\text{Vol } Q_n}{\text{Vol}[-1, 1]^{n-3}}.$$

But this is just the probability that a sum of $n - 3$ independent Uniform([-1, 1]) variates is between -1 and 1.

By Shepp’s local limit theorem,

$$\mathbb{P}\left(-1 \leq \sum_{i=0}^{n-4} s_i \leq 1\right) \approx \mathbb{P}\left(-1 \leq \mathcal{N}\left(0, \sqrt{\frac{n-3}{3}}\right) \leq 1\right).$$
We can sample Q_n by rejection sampling $[-1, 1]^{n-3}$. The acceptance probability is

\[
\frac{\text{Vol } Q_n}{\text{Vol}[-1, 1]^{n-3}}.
\]

But this is just the probability that a sum of $n - 3$ independent Uniform([-1, 1]) variates is between −1 and 1.

By Shepp’s **local limit theorem**,

\[
P\left(-1 \leq \sum_{i=0}^{n-4} s_i \leq 1\right) \sim P\left(-1 \leq \mathcal{N}\left(0, \sqrt{\frac{n-3}{3}}\right) \leq 1\right)
\]

\[
= \text{erf}\left(\sqrt{\frac{3}{2(n-3)}}\right) \approx \sqrt{\frac{6}{\pi n}}.
\]
The Action-Angle Method

Action-Angle Method (with Cantarella and Uehara, 2015)

1. Generate \((s_1, \ldots, s_{n-3})\) uniformly on \([-1, 1]^{n-3}\) \(O(n)\) time

2. Test whether \(-1 \leq \sum s_i \leq 1\) acceptance ratio \(\simeq 1/\sqrt{n}\)

3. Let \(s_{n-2} = -\sum s_i\) and test \((s_1, \ldots, s_{n-2})\) against the “hard” conditions acceptance ratio \(> 1/n\)

4. Change coordinates to get diagonal lengths

5. Generate dihedral angles from \(T^{n-3}\)

6. Build sample polygon in action-angle coordinates
Knot Types of 10 Million 60-gons

Straight line: $e^{-e n^{-7/4}}$
Knot Types of 10 Million 60-gons

Straight line: \(e^{-e} n^{-7/4} \)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>distinct HOMFLYs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polygonal Folds(^1)</td>
<td>2219</td>
</tr>
<tr>
<td>Crankshaft Moves</td>
<td>6110</td>
</tr>
<tr>
<td>Hedgehog Method</td>
<td>1111</td>
</tr>
<tr>
<td>Triangle Method</td>
<td>3505</td>
</tr>
<tr>
<td>Action-Angle Method</td>
<td>(\geq 6371)</td>
</tr>
</tbody>
</table>

\(^1\)100 million samples, instead of 10 million.
Questions
Question

How to use algebraic geometry to understand $\hat{\text{Pol}}(n; \vec{r})$?
Question

How to incorporate excluded volume into the model?
Geometry of the Space of Planar Polygons

Question

What is the analog of the symplectic story for n-gons in the plane?
Topologically Constrained Random Walks

Question
What special geometric structures exist on the moduli space of topologically-constrained random walks patterned on a given graph?

Tezuka Lab, Tokyo Institute of Technology
Question

Is there a generalization to a geometric theory of (immersed) closed piecewise-linear surfaces in \mathbb{R}^3? Or, more generally, closed PL k-manifolds in \mathbb{R}^n?
Thank you!

Thank you for listening!
• *The Symplectic Geometry of Closed Equilateral Random Walks in 3-Space*
 Jason Cantarella and Clayton Shonkwiler

• *A Fast Direct Sampling Algorithm for Equilateral Closed Polygons*
 Jason Cantarella, Clayton Shonkwiler, and Erica Uehara
 arXiv:1510.02466

http://shonkwiler.org