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Set-Up
Let V be a vector field on a compact domain Q C R3.

The energy of V is

E(V) = /Q(v- V)dvolg.
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The energy of V is

E(V)= /(V V)dvolg.
Q
Suppose V is divergence-free. Then
V=VxW,

where W is the vector potential for V.

Set-Up



Question

If V is a plasma flow, is there any obstruction to V relaxing to
have arbitrarily small energy?



Question

If V is a plasma flow, is there any obstruction to V relaxing to
have arbitrarily small energy?

Mathematically, are there obstructions to making the field energy
arbitrarily small via volume-preserving diffeomorphisms homotopic
to the identity?



Answer: Not necessarily!
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A field which can be relaxed to have arbitrarily small energy
(Freedman).



Linked orbits
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Linked orbits prevent the energy from getting arbitrarily small.



Linking number

K ={x(s)}

1= Lk(K,L) = 1/ bW XY e
ATt Jiyp ds — dt |x—y|3
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Helicity

The Gauss Linking Integral:

Lk(K, L) = 1/ P Y XY e
A7 KxL ds dt ‘X — y‘?’

Important: the integrand is isometry-invariant.

Definition (Woltjer)
The helicity of a divergence-free vector field V on a compact
domain Q Cc R3 is

1

l / V(x) x V(y) - ——2 dvoly dvol,.
QAxQ

H(V) =
V=2 x = y[?



A lower bound for energy

Theorem (Woltjer, Moffatt, Arnol’d, ...)

H(V) is invariant under any volume-preserving diffeomorphism
which is homotopic to the identity.

Theorem (Arnol'd)

[H(V)| < R(Q)E(V)

where R(Q) is a positive constant depending on the shape and size
of Q.



The dream

Arnol’d and Khesin:
The dream is to define such a hierarchy of invariants for
generic vector fields such that, whereas all the invariants
of order < k have zero value for a given field and there
exists a nonzero invariant of order k + 1, this nonzero
invariant provides a lower bound for the field energy.



Idea: Higher-order linking invariants
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Three-component links were classified up to link-homotopy by
Milnor:
e The pairwise linking numbers p, g, r.
e The triple linking number y. = Ti153, which is an integer
modulo gcd(p, g, r).



Link homotopy

Definition
A link homotopy of a link L is a deformation during which each
component may cross itself, but distinct components must remain

disjoint.

AEN



Flux tubes

If V is supported on flux tubes, then u provides a lower bound for
the field energy (Monastyrsky—Retakh, Berger, etc.; see also
Freedman—He).
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Where does the Gauss Linking Integral come from?



Linking integrals and configuration spaces

Where does the Gauss Linking Integral come from?

homotop
Sl x St <+ Conf,R3 dicd
equiv.

(s,t) — (x(s), y(t)) 1 " x(s) = y ()]



Linking integrals and configuration spaces

Where does the Gauss Linking Integral come from?

homotop
Sl x St <+ Conf,R3 dicd
equiv.

(s, 8) —— (x(s), ¥(2)) ¢ g

If f is the composition of the above maps

Lk(K, L) = / w,
Slx St

where w is the standard area form on S2, scaled to have area 1
instead of 4.



Three-component links

Consider a three-component link in S3:

Sl % St x S s ConfsS3 % $3xs2_ ", g2



Three-component links

Consider a three-component link in S3:

Sl % S x S s ConfsS3 ?» $3xs2 ", g2

w = (per - przy)/‘przx - przy|



Three-component links

Consider a three-component link in S3:
hom.
S x S x St s Conf3S® o §3x 52 T 52
equiv.
This determines a map

g: L(3) — [S* x St x St 87
L [g]

from link-homotopy classes of 3-component links to homotopy
classes of maps from the 3-torus to the 2-sphere.



Three-component links

Consider a three-component link in S3:
S'x §1x S' = Confy§? o 53 §2 T 52,
This determines a map
g: L(3) — [S' xSt xS S
L [a]

from link-homotopy classes of 3-component links to homotopy
classes of maps from the 3-torus to the 2-sphere.

[S? x St x S, 5?] was classified by Pontryagin by:
e The degrees p, g, r on the 2-dimensional subtori.

e A “Hopf invariant” v, which is an integer modulo
2gcd(p, q,r).



Interpreting link-homotopy invariants as homotopy

invariants

Theorem A (with DeTurck et al.)
The map g : £(3) — [S* x St x S1,S?] is injective and maps

pp
g—q
r—r

B 24



An integral formula for p

A more symmetric version of g along with a modification of
Whitehead's integral for the Hopf invariant of a map S3 — S2
yields:

Theorem B (with DeTurck et al.)

If the pairwise linking numbers of the three-component link L C S3
are all zero, then

u(l) = 5 (e *wr) ANwy,
T3

where w; = gfw and ¢ is the fundamental solution of the
Laplacian on T3.



An integral formula for p

A more symmetric version of g along with a modification of
Whitehead's integral for the Hopf invariant of a map S3 — S2
yields:

Theorem B (with DeTurck et al.)

If the pairwise linking numbers of the three-component link L C S3
are all zero, then

u(l) = 5 (e *wr) ANwy,
T3

where w; = gfw and ¢ is the fundamental solution of the
Laplacian on T3.

Note: The integrand is isometry-invariant.



The fundamental solution of the Laplacian




A Fourier series version

wp = Z(an + ibn)e™™ - xdx
n#0

is the Fourier expansion of wy,



A Fourier series version

wp = Z(an + ibn)e™™ - xdx
n#0

is the Fourier expansion of w;, then

o3 an X by
=8m Z |n|2
n#0



Theorem A

hom.
St x St x ST Conf3S3 omodks? T g2
equiv.
determines a map

g: L(3) — [S* x St x St 87
L [g]



Theorem A

St x St x ST Conf3S3 % $Bxs2 T g2

determines a map

g L(3) ——[S'x Stx St $?
L [g]

Theorem A

Let L be a three-component link in S3. Then the pairwise linking
numbers p, q, and r of L are equal to the degrees of its
characteristic map g : S* x St x St — 52 on the two-dimensional
coordinate subtori, while twice Milnor’s p-invariant for L is equal
to Pontryagin’s v-invariant for gg modulo 2 gcd(p, q, r).



Strategy of the Proof

The delta move does not change pairwise linking numbers.
’\\"K\\i — 4\ h\\
Nt (X

Murakami and Nakanishi (1989) proved that any two links with the
same number of components and the same pairwise linking
numbers are related by a sequence of delta moves.



Strategy of the Proof

The delta move does not change pairwise linking numbers.
S Al
/ =X \
NV AT

Murakami and Nakanishi (1989) proved that any two links with the
same number of components and the same pairwise linking
numbers are related by a sequence of delta moves.

The strategy for proving Theorem A is to analyze the effect
of a delta move on the p-invariant of a three component link
and on the v-invariant of its associated map.




Delta moves and the p-invariant

We use Mellor and Melvin's (2003) geometric formulation of
Milnor's p-invariant to see that a delta move increases p by 1.



Delta moves and the v-invariant

The heart of the proof of Theorem A consists of showing that a
delta move increases Pontryagin's v-invariant by 2.



Delta moves and the v-invariant

The heart of the proof of Theorem A consists of showing that a
delta move increases Pontryagin's v-invariant by 2.

To see this, we put L in “generic position” with respect to the
standard open book on S3.

We develop an algorithm for computing the Pontryagin v-invariant
of a link in this position, and use it to show that a delta move
increases v by 2.



Theorem B

Theorem B
If the pairwise linking numbers of the three-component link L C S3
are all zero, then:

i =5 [ dora) nw &
- —;/ﬁwm(x) < ily) - Vyp(x—y) dxdy  (2)
=81 "an x by -n/||n|? . (3)

n#0



Symmetric characteristic map

We need a more symmetric version of the characteristic map for
Theorem B.

Suppose (x, y,z) € Conf3S3. Then x, y, and z span a 2-plane in
R4,




Symmetric characteristic map

We need a more symmetric version of the characteristic map for
Theorem B.

Suppose (x, y,z) € Conf3S3. Then x, y, and z span a 2-plane in
R4,

G : Conf3S3 — GR* ~ S? x S? is SO(4)-equivariant.



Why should there be an integral formula for

If f:S! x S x ST — S? is null-homotopic on the 2-skeleton (i.e.,
p=q=r= 0), then we can collapse the 2-skeleton, yielding a
map f : S3 — S2; then v(f) is equal to the Hopf invariant of f.

Whitehead's integral formula for the Hopf invariant

e h:S3— S2 smooth.

e w the normalized area form on $? ([, w =1).
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Why should there be an integral formula for

If f:S! x S x ST — S? is null-homotopic on the 2-skeleton (i.e.,
p=q=r= 0), then we can collapse the 2-skeleton, yielding a
map f : S3 — S2; then v(f) is equal to the Hopf invariant of f.

Whitehead's integral formula for the Hopf invariant

e h: 53— S? smooth.
e w the normalized area form on $? ([, w =1).

e Then h*w is closed and, therefore, exact: h*w = da.

e Then
Hopf(h) = / ah'w= / a A da.
S3 S3



Proof of Theorem B

If L is a three-component link in S3 such that p = g = r = 0, then
the characteristic map g; : T3 — S? is null-homotopic on the
coordinate two-tori.

Hence, w; = g/w is an exact 2-form on T3.



Proof of Theorem B

If L is a three-component link in S3 such that p = g = r = 0, then
the characteristic map g; : T3 — S? is null-homotopic on the
coordinate two-tori.

Hence, w; = g/w is an exact 2-form on T3.

A standard computation shows that
a=9(p*wp)

satisfies da. = w;. Here ¢ is the fundamental solution of the scalar
Laplacian on T3, % w, is the convolution of ¢ and w;, and § is
the L2-adjoint of the exterior derivative d.

Moreover, « is the unique 1-form of smallest L2 norm satisfying
da=uw.



Proof of Theorem B (cont.)

Then Whitehead's integral formula for the Hopf invariant,
transplanted to T3, implies

ver) = [ doswn) o

By Theorem A,

p(t) = Sula) = ;/ﬁ 5(ip * wi) Awl.



Proof of Theorem B (cont.)

Then Whitehead's integral formula for the Hopf invariant,
transplanted to T3, implies

ver) = [ doswn) o

By Theorem A,

1

p(L) = §l/(gL / (e *wr) ANwy.

Then the vector field version is
1 ~ -
p(D)= =5 [ i) <) Ty elx - y) dxdy
T3xT3

and the Fourier series version is

L)=8r>) et

n#0
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e Find the analogues of Theorems A and B for three-component
links in R3.
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What next?

e Find the analogues of Theorems A and B for three-component
links in R3.
In other words, the representation of link-homotopy classes of
links into the set of homotopy classes of maps should be
equivariant with respect to the action of Isom™(R3), and the
integral formula for  should be invariant under the action of
Isom™(R3).

e Is the representation £(n) — [T, Conf,R3] faithful?
Theorem A implies “yes” for n = 3, and Koschorke has shown
that the answer is “yes” when one restricts to almost trivial
n-component links.



The dream

Arnol’d and Khesin:
The dream is to define such a hierarchy of invariants for
generic vector fields such that, whereas all the invariants
of order < k have zero value for a given field and there
exists a nonzero invariant of order k + 1, this nonzero
invariant provides a lower bound for the field energy.



Thanks!




