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Set-Up

Let V be a vector field on a compact domain Ω ⊂ R3.

The energy of V is

E (V ) =

∫
Ω
(V · V )dvolΩ.

Suppose V is divergence-free. Then

V = ∇×W ,

where W is the vector potential for V .
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Question

If V is a plasma flow, is there any obstruction to V relaxing to
have arbitrarily small energy?

Mathematically, are there obstructions to making the field energy
arbitrarily small via volume-preserving diffeomorphisms homotopic
to the identity?
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Answer: Not necessarily!

§3. Sakharov–Zeldovich minimization problem 135

Figure 27. A rotation field in a 3-dimensional ball can dissipate its energy almost com-
pletely.

violate the axial symmetry of the field, since any axisymmetric diffeomorphism
sends the rotation field to itself and hence preserves the total energy.) Now the
field energy in the solid tori is decreased (since the field lines are shortened). The
whole construction can be carried out in such a way that the field energy in the
remaining small volume is not increased by too much. As a result, the total energy
remains arbitrarily small.

This consideration was placed on a rigorous foundation by M. Freedman. We
outline the main ideas of his proof below.

Let B3 be a ball in three-dimensional Euclidean space and ξ the vector field
generated by infinitesimal rotation about the vertical axis. The trajectories of this
field are horizontal pairwise unlinked circles (and their limits, the points on the
vertical axis).

Theorem 3.3 [Fr2]. There exists a family of volume-preserving diffeomorphisms
ϕt : B3 → B3, 1 ≤ t ≤ ∞, such that it starts at the identity diffeomorphism
(ϕ1 $ Id), it is steady on the boundary (ϕt

∣∣
∂B3 $ Id) for all t , and the family of

the transformed vector fields ξt :$ ϕt∗ξ (being the image of the rotation field ξ

under the ϕt -action) fulfills the following conditions as t → ∞:

(1) the energy of the field ξt decays as E(ξt ) :$ ‖ξt‖2
L2 $ O(1/t),

(2) the supremum norm is unbounded: ‖ξt‖L∞ $ O(t), yet
(3) for all k, p < ∞ the Sobolev norms decay: ‖ξt‖Lk,p → 0 (here the norm

‖η‖Lk,p is the Lp-norm in the space of η’s derivatives of orders 0, . . . , k).

Remark 3.4 [Fr2]. For this family of diffeomorphisms, the limit of ξt $ ϕt∗ξ
at infinity t → ∞ does not exist, but for large t the regions of large norm ‖ξt‖
constitute a “topological froth” Ft with trivial relative topology. The froth Ft is

A field which can be relaxed to have arbitrarily small energy
(Freedman).



Linked orbits
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The positive and negative subspaces of the form H are both infinite-dimensional;
see [Arn9, Smo1]. Thus H generates a bi-invariant pseudo-Euclidean (indefinite)
metric on the corresponding group S Diff(M). For the case of a non-simply con-
nected M one has to confine oneself to the subalgebra of all null-homologous
vector fields within the Lie algebra of all divergence-free vector fields on M (see
Section IV.8.D for more detail).

In this case one may also hope to define the generalized Hopf invariants with
values in some modules over the fundamental group, but this way has not yet been
duly explored.

§2. Topological obstructions to energy relaxation

2.A. Model example: Two linked flux tubes
The helicity obstruction to the energy relaxation is clearly seen in the example of
a magnetic field confined to two linked solitori; Fig. 23a,b. Assume that the field
vanishes outside those tubes and the field trajectories are all closed and oriented
along the tube axes inside.

To minimize the energy of a vector field with closed orbits by acting on the field
by a volume-preserving diffeomorphism, one has to shorten the length of most
trajectories. (Indeed, the orbit periods are preserved under the diffeomorphism
action; therefore, a reduction of the orbits’ lengths shrinks the velocity vectors
along the orbits.) In turn, the shortening of the trajectories implies a fattening of
the solitori (since the acting diffeomorphisms are volume-preserving).

(a) (b)

Figure 23. (a) A magnetic field is confined to two linked solitori. (b) Relaxation fattens
the tori and shrinks the field orbits.

For a linked configuration, as in Fig. 23b, the solitori prevent each other from
endless fattening and therefore from further shrinking of the orbits. Therefore,
heuristically, in the volume-preserving relaxation process the magnetic energy of
the field supported on a pair of linked tubes is bounded from below and cannot
attain too small values [Sakh].

Linked orbits prevent the energy from getting arbitrarily small.
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K = {x(s)}
L = {y(t)}

1 = Lk(K , L) =
1

4π

∫
K×L
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|x − y |3
ds dt
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Helicity

The Gauss Linking Integral:
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ds dt

Important: the integrand is isometry-invariant.

Definition (Woltjer)

The helicity of a divergence-free vector field V on a compact
domain Ω ⊂ R3 is

H(V ) :=
1

4π

∫
Ω×Ω

V (x)× V (y) · x − y

|x − y |3
dvolx dvoly .
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A lower bound for energy

Theorem (Woltjer, Moffatt, Arnol′d, . . . )

H(V ) is invariant under any volume-preserving diffeomorphism
which is homotopic to the identity.

Theorem (Arnol′d)

|H(V )| ≤ R(Ω)E (V )

where R(Ω) is a positive constant depending on the shape and size
of Ω.



The dream

Arnol′d and Khesin:

The dream is to define such a hierarchy of invariants for
generic vector fields such that, whereas all the invariants
of order ≤ k have zero value for a given field and there
exists a nonzero invariant of order k + 1, this nonzero
invariant provides a lower bound for the field energy.



Idea: Higher-order linking invariants

Three-component links were classified up to link-homotopy by
Milnor:
• The pairwise linking numbers p, q, r .

• The triple linking number µ = µ123, which is an integer
modulo gcd(p, q, r).



Link homotopy

Definition
A link homotopy of a link L is a deformation during which each
component may cross itself, but distinct components must remain
disjoint.

!



Flux tubes

If V is supported on flux tubes, then µ provides a lower bound for
the field energy (Monastyrsky–Retakh, Berger, etc.; see also
Freedman–He).



Linking integrals and configuration spaces

Where does the Gauss Linking Integral come from?

S1 × S1 ⊂ - Conf2R3 homotopy

equiv.
- S2

(s, t) - (x(s), y(t)) - x(s)− y(t)

|x(s)− y(t)|
If f is the composition of the above maps

Lk(K , L) =

∫
S1×S1

f ∗ω,

where ω is the standard area form on S2, scaled to have area 1
instead of 4π.
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Three-component links

Consider a three-component link in S3:

S1 × S1 × S1 ⊂- Conf3S
3 hom.

equiv.
- S3 × S2 π - S2.

This determines a map

g : L(3) - [S1 × S1 × S1,S2]

L - [gL]

from link-homotopy classes of 3-component links to homotopy
classes of maps from the 3-torus to the 2-sphere.

[S1 × S1 × S1,S2] was classified by Pontryagin by:

• The degrees p, q, r on the 2-dimensional subtori.

• A “Hopf invariant” ν, which is an integer modulo
2 gcd(p, q, r).
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Interpreting link-homotopy invariants as homotopy
invariants

Theorem A (with DeTurck et al.)

The map g : L(3) → [S1 × S1 × S1,S2] is injective and maps

p 7→ p

q 7→ q

r 7→ r

µ 7→ 2µ



An integral formula for µ

A more symmetric version of g along with a modification of
Whitehead’s integral for the Hopf invariant of a map S3 → S2

yields:

Theorem B (with DeTurck et al.)

If the pairwise linking numbers of the three-component link L ⊂ S3

are all zero, then

µ(L) =
1

2

∫
T 3

δ(ϕ ∗ ωL) ∧ ωL,

where ωL = g∗
Lω and ϕ is the fundamental solution of the

Laplacian on T 3.

Note: The integrand is isometry-invariant.
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The fundamental solution of the Laplacian 
 

 

ϕ(x) =
1

8π3

∑
n∈Z3\{0}

e in·x

|n|2
.



A Fourier series version

If
ωL =

∑
n 6=0

(an + ibn)e
in·x · ?dx

is the Fourier expansion of ωL,

then

µ(L) = 8π3
∑
n 6=0

an × bn · n
|n|2

.
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Theorem A
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3 hom.

equiv.
- S3 × S2 π - S2.

determines a map

g : L(3) - [S1 × S1 × S1,S2]

L - [gL]

Theorem A
Let L be a three-component link in S3. Then the pairwise linking
numbers p, q, and r of L are equal to the degrees of its
characteristic map gL : S1 × S1 × S1 → S2 on the two-dimensional
coordinate subtori, while twice Milnor’s µ-invariant for L is equal
to Pontryagin’s ν-invariant for gL modulo 2 gcd(p, q, r).
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Strategy of the Proof

The delta move does not change pairwise linking numbers.

Murakami and Nakanishi (1989) proved that any two links with the
same number of components and the same pairwise linking
numbers are related by a sequence of delta moves.

The strategy for proving Theorem A is to analyze the effect
of a delta move on the µ-invariant of a three component link
and on the ν-invariant of its associated map.
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Delta moves and the µ-invariant

We use Mellor and Melvin’s (2003) geometric formulation of
Milnor’s µ-invariant to see that a delta move increases µ by 1.



Delta moves and the ν-invariant

The heart of the proof of Theorem A consists of showing that a
delta move increases Pontryagin’s ν-invariant by 2.

To see this, we put L in “generic position” with respect to the
standard open book on S3.

We develop an algorithm for computing the Pontryagin ν-invariant
of a link in this position, and use it to show that a delta move
increases ν by 2.
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Theorem B

Theorem B
If the pairwise linking numbers of the three-component link L ⊂ S3

are all zero, then:

µ(L) =
1

2

∫
T 3

δ(ϕ ∗ ωL) ∧ ωL (1)

= −1

2

∫
T 3×T 3

⇀
vL(x)×

⇀
vL(y) ·∇y ϕ(x− y) dx dy (2)

= 8π3
∑
n 6=0

an × bn · n/‖n‖2 . (3)



Symmetric characteristic map

We need a more symmetric version of the characteristic map for
Theorem B.

Suppose (x , y , z) ∈ Conf3S
3. Then x , y , and z span a 2-plane in

R4.

G (x , y , z)

x
y z

S3R4

G : Conf3S
3 → G2R4 ' S2 × S2 is SO(4)-equivariant.
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Why should there be an integral formula for µ

If f : S1 × S1 × S1 → S2 is null-homotopic on the 2-skeleton (i.e.,
p = q = r = 0), then we can collapse the 2-skeleton, yielding a
map f : S3 → S2; then ν(f ) is equal to the Hopf invariant of f .

Whitehead’s integral formula for the Hopf invariant

• h : S3 → S2 smooth.

• ω the normalized area form on S2 (
∫
S2 ω = 1).

• Then h∗ω is closed and, therefore, exact: h∗ω = dα.

• Then

Hopf(h) =

∫
S3

α ∧ h∗ω =

∫
S3

α ∧ dα.
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Proof of Theorem B

If L is a three-component link in S3 such that p = q = r = 0, then
the characteristic map gL : T 3 → S2 is null-homotopic on the
coordinate two-tori.

Hence, ωL = g∗
Lω is an exact 2-form on T 3.

A standard computation shows that

α = δ(ϕ ∗ ωL)

satisfies dα = ωL. Here ϕ is the fundamental solution of the scalar
Laplacian on T 3, ϕ ∗ ωL is the convolution of ϕ and ωL, and δ is
the L2-adjoint of the exterior derivative d .

Moreover, α is the unique 1-form of smallest L2 norm satisfying
dα = ωL.



Proof of Theorem B

If L is a three-component link in S3 such that p = q = r = 0, then
the characteristic map gL : T 3 → S2 is null-homotopic on the
coordinate two-tori.

Hence, ωL = g∗
Lω is an exact 2-form on T 3.

A standard computation shows that

α = δ(ϕ ∗ ωL)

satisfies dα = ωL. Here ϕ is the fundamental solution of the scalar
Laplacian on T 3, ϕ ∗ ωL is the convolution of ϕ and ωL, and δ is
the L2-adjoint of the exterior derivative d .

Moreover, α is the unique 1-form of smallest L2 norm satisfying
dα = ωL.



Proof of Theorem B (cont.)
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What next?

• Find the analogues of Theorems A and B for three-component
links in R3.

In other words, the representation of link-homotopy classes of
links into the set of homotopy classes of maps should be
equivariant with respect to the action of Isom+(R3), and the
integral formula for µ should be invariant under the action of
Isom+(R3).

• Is the representation L(n) → [T n,ConfnR3] faithful?
Theorem A implies “yes” for n = 3, and Koschorke has shown
that the answer is “yes” when one restricts to almost trivial
n-component links.
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The dream

Arnol′d and Khesin:

The dream is to define such a hierarchy of invariants for
generic vector fields such that, whereas all the invariants
of order ≤ k have zero value for a given field and there
exists a nonzero invariant of order k + 1, this nonzero
invariant provides a lower bound for the field energy.



Thanks!


