Poincaré Duality Angles on Riemannian Manifolds with Boundary

Clayton Shonkwiler

Department of Mathematics
Haverford College

March 4, 2010
Let M^n be a compact Riemannian manifold with non-empty boundary ∂M.
Let M^n be a compact Riemannian manifold with non-empty boundary ∂M.

\[H^p(M; \mathbb{R}) \]
\[H^p(M, \partial M; \mathbb{R}) \]
de Rham’s Theorem

Suppose M^n is a compact, oriented, smooth manifold. Then

$$H^p(M; \mathbb{R}) \cong C^p(M)/\mathcal{E}^p(M),$$

where $C^p(M)$ is the space of closed p-forms on M and $\mathcal{E}^p(M)$ is the space of exact p-forms.
If M is Riemannian, the metric induces an L^2 inner product on $\Omega^p(M)$:

$$\langle \omega, \eta \rangle := \int_M \omega \wedge \ast \eta.$$
If M is Riemannian, the metric induces an L^2 inner product on $\Omega^p(M)$:

$$\langle \omega, \eta \rangle := \int_M \omega \wedge \star \eta.$$

When M is closed, the orthogonal complement of $E^p(M)$ inside $C^p(M)$ is

$$\mathcal{H}^p(M) := \{ \omega \in \Omega^p(M) : d\omega = 0, \delta \omega = 0 \}$$
If M is Riemannian, the metric induces an L^2 inner product on $\Omega^p(M)$:

$$\langle \omega, \eta \rangle := \int_M \omega \wedge \star \eta.$$

When M is closed, the orthogonal complement of $\mathcal{E}^p(M)$ inside $\mathcal{C}^p(M)$ is

$$\mathcal{H}^p(M) := \{ \omega \in \Omega^p(M) : d\omega = 0, \delta\omega = 0 \}$$

Kodaira called this the space of harmonic p-fields on M.
Hodge’s Theorem

If M^n is a closed, oriented, smooth Riemannian manifold,

\[H^p(M; \mathbb{R}) \cong \mathcal{H}^p(M). \]
Define $i : \partial M \hookrightarrow M$ to be the natural inclusion.
Define $i : \partial M \hookrightarrow M$ to be the natural inclusion.

The L^2-orthogonal complement of the exact forms inside the space of closed forms is now:

$$\mathcal{H}_N^p(M) := \{ \omega \in \Omega^p(M) : d\omega = 0, \delta \omega = 0, i^* \star \omega = 0 \}.$$
Suppose dx_n corresponds to the normal direction.

If $i^* \star \omega = 0$, then
Suppose dx_n corresponds to the normal direction.

If $i^* \star \omega = 0$, then

$$\star \omega = \left(\sum f_i \, dx_i \right) \wedge dx_n,$$
Suppose dx_n corresponds to the normal direction.

If $i^*\star \omega = 0$, then

$$\star \omega = \left(\sum f_I dx_I \right) \land dx_n,$$

meaning that ω has no dx_n in it.
Define \(i : \partial M \hookrightarrow M \) to be the natural inclusion.

The \(L^2 \)-orthogonal complement of the exact forms inside the space of closed forms is now:

\[
\mathcal{H}_N^p(M) := \{ \omega \in \Omega^p(M) : d\omega = 0, \delta \omega = 0, i^* \star \omega = 0 \}.
\]
Define \(i : \partial M \hookrightarrow M \) to be the natural inclusion.

The \(L^2 \)-orthogonal complement of the exact forms inside the space of closed forms is now:

\[
\mathcal{H}^p_N(M) := \{ \omega \in \Omega^p(M) : d\omega = 0, \delta \omega = 0, i^* \star \omega = 0 \}.
\]

Then

\[
H^p(M; \mathbb{R}) \cong \mathcal{H}^p_N(M).
\]
The relative cohomology appears as

\[H^p(M, \partial M; \mathbb{R}) \cong \mathcal{H}_D^p(M). \]
The relative cohomology appears as

\[H^p(M, \partial M; \mathbb{R}) \cong \mathcal{H}^p_D(M). \]

\[\mathcal{H}^p_D(M) := \{ \omega \in \Omega^p(M) : d\omega = 0, \delta\omega = 0, i^*\omega = 0 \}. \]
Non-orthogonality

The concrete realizations of $H^p(M; \mathbb{R})$ and $H^p(M, \partial M; \mathbb{R})$ meet only at the origin:

$$H^p_N(M) \cap H^p_D(M) = \{0\}$$
The concrete realizations of $H^p(M; \mathbb{R})$ and $H^p(M, \partial M; \mathbb{R})$ meet only at the origin:

$$H^p_N(M) \cap H^p_D(M) = \{0\}$$

...but they are not orthogonal!
The concrete realizations of $H^p(M; \mathbb{R})$ and $H^p(M, \partial M; \mathbb{R})$ meet only at the origin:

$$\mathcal{H}^p_N(M) \cap \mathcal{H}^p_D(M) = \{0\}$$

...but they are not orthogonal!
Interior and boundary subspaces

Interior subspace of $\mathcal{H}_N^p(M)$:

$$\ker i^* \text{ where } i^*: H^p(M; \mathbb{R}) \to H^p(\partial M; \mathbb{R})$$
Interior and boundary subspaces

Interior subspace of $\mathcal{H}_N^p(M)$:

$$\ker i^* \text{ where } i^* : H^p(M; \mathbb{R}) \rightarrow H^p(\partial M; \mathbb{R})$$

$$\mathcal{E}_{\partial} \mathcal{H}_N^p(M) := \{ \omega \in \mathcal{H}_N^p(M) : i^* \omega = d\varphi, \varphi \in \Omega^{p-1}(\partial M) \}.$$
Interior and boundary subspaces

Interior subspace of $\mathcal{H}_N^p(M)$:

$$\ker i^* \text{ where } i^*: H^p(M; \mathbb{R}) \to H^p(\partial M; \mathbb{R})$$

$$\mathcal{E}_\partial \mathcal{H}_N^p(M) := \{\omega \in \mathcal{H}_N^p(M) : i^* \omega = d\varphi, \varphi \in \Omega^{p-1}(\partial M)\}.$$

Interior subspace of $\mathcal{H}_D^p(M)$:

$$\star \mathcal{E}_\partial \mathcal{H}_N^{n-p}(M) = c \mathcal{E}_\partial \mathcal{H}_D^p(M)$$

$$= \{\eta \in \mathcal{H}_D^p(M) : i^* \star \eta = d\psi, \psi \in \Omega^{n-p-1}(\partial M)\}.$$
To prove that there is an element of $\mathcal{E}H^p_N(M)$ having arbitrary preassigned periods on $c p_1 \hookrightarrow \ldots c p_g$, it suffices to show that $(F_1 \hookrightarrow \ldots \hookrightarrow F_g) \mapsto (C_1 \hookrightarrow \ldots \hookrightarrow C_g)$ is an isomorphism.

Suppose some set of F-values gives all zero C-values, meaning that $i^* \eta$ is zero in the cohomology of ∂M. In other words, the form $i^* \eta$ is exact, meaning that $\eta \in \mathcal{E}H^p_N(M)$, the interior subspace of $H^p_N(M)$. Since $\mathcal{E}H^p_N(M)$ is orthogonal to $\mathcal{E}H^p_N(M)$, this implies that $\eta = 0$, so $\tilde{\eta} = \pm \star \eta = 0$ and hence the periods F_i of $\tilde{\eta}$ must have been zero.

Therefore, the map $(F_1 \hookrightarrow \ldots \hookrightarrow F_g) \mapsto (C_1 \hookrightarrow \ldots \hookrightarrow C_g)$ is an isomorphism, completing Step 1.

Step 2: Let $\omega \in H^p_N(M)$ and let $C_1 \hookrightarrow \ldots \hookrightarrow C_g$ be the periods of ω on the above p-cycles $c p_1 \hookrightarrow \ldots \hookrightarrow c p_g$. Let $\alpha \in \mathcal{E}H^p_N(M)$ be the unique form guaranteed by Step 1 having the same periods on this homology basis.

Then $\beta = \omega - \alpha$ has zero periods on the p-cycles $c p_1 \hookrightarrow \ldots \hookrightarrow c p_g$; since β is a closed form on M, it certainly has zero period on each p-cycle of ∂M which bounds in M. Hence, β has zero periods on all p-cycles of ∂M, meaning that $i^* \beta$ is exact, so $\beta \in \mathcal{E}H^p_N(M)$.

Therefore, $\omega = \alpha + \beta \in \mathcal{E}H^p_N(M) + \mathcal{E}H^p_D(M)$, so $H^p_N(M)$ is indeed the sum of these two subspaces, as claimed in (2.1.8). This completes the proof of the theorem.

Theorem 2.1.2 allows the details of Figure 1.1 to be filled in, as shown in Figure 2.1.

Definition (DeTurck–Gluck)

The *Poincaré duality angles* of the Riemannian manifold M are the principal angles between the interior subspaces.
Guess

If M is “almost” closed, the Poincaré duality angles of M should be small.
Consider \mathbb{CP}^2 with its usual Fubini-Study metric. Let $p \in \mathbb{CP}^2$. Then define

$$M_r := \mathbb{CP}^2 - B_r(p).$$
Consider \mathbb{CP}^2 with its usual Fubini-Study metric. Let $p \in \mathbb{CP}^2$. Then define

$$M_r := \mathbb{CP}^2 - B_r(p).$$
∂M_r is a 3-sphere.
\[\partial M_r \text{ is a 3-sphere.} \]

\[M_r \text{ is the } D^2\text{-bundle over } \mathbb{CP}^1 (\simeq S^2(1/2)) \text{ with Euler characteristic 1.} \]
∂M_r is a 3-sphere.

M_r is the D^2-bundle over $\mathbb{CP}^1 (\simeq S^2(1/2))$ with Euler characteristic 1.

M_r has absolute cohomology in dimensions 0 and 2.
\[\partial M_r \text{ is a 3-sphere.} \]

\[M_r \text{ is the } D^2\text{-bundle over } \mathbb{CP}^1 (\cong S^2(1/2)) \text{ with Euler characteristic 1.} \]

\[M_r \text{ has absolute cohomology in dimensions 0 and 2.} \]

\[M_r \text{ has relative cohomology in dimensions 2 and 4.} \]
\[\partial M_r \text{ is a 3-sphere.} \]

\[M_r \text{ is the } D^2\text{-bundle over } \mathbb{CP}^1 (\simeq S^2(1/2)) \text{ with Euler characteristic 1.} \]

\[M_r \text{ has absolute cohomology in dimensions 0 and 2.} \]

\[M_r \text{ has relative cohomology in dimensions 2 and 4.} \]

Therefore, \(M_r \) has a single Poincaré duality angle \(\theta_r \) between \(\mathcal{H}^2_N(M_r) \) and \(\mathcal{H}^2_D(M_r) \).
So the goal is to find closed and co-closed 2-forms on M_r which satisfy Neumann and Dirichlet boundary conditions.
Find harmonic 2-fields

So the goal is to find closed and co-closed 2-forms on M_r which satisfy Neumann and Dirichlet boundary conditions.

Such 2-forms must be isometry-invariant.
Find harmonic 2-fields

So the goal is to find closed and co-closed 2-forms on M_r which satisfy Neumann and Dirichlet boundary conditions.

Such 2-forms must be isometry-invariant.

$$\text{Isom}_0(M_r) = SU(2).$$
Find harmonic 2-fields

So the goal is to find closed and co-closed 2-forms on M_r which satisfy Neumann and Dirichlet boundary conditions.

Such 2-forms must be isometry-invariant.

\[\text{Isom}_0(M_r) = SU(2). \]

Find closed and co-closed $SU(2)$-invariant forms on M_r satisfying Neumann and Dirichlet boundary conditions.
The hypersurfaces at constant distance t from \mathbb{CP}^1 are Berger 3-spheres:

$$S^3(\cos t) \sin t$$
The hypersurfaces at constant distance \(t \) from \(\mathbb{CP}^1 \) are Berger 3-spheres:

\[S^3(\cos t)\sin t \]
The Poincaré duality angle for M_r

$$\cos \theta_r = \frac{1 - \sin^4 r}{1 + \sin^4 r}.$$
The Poincaré duality angle for M_r

$$
\cos \theta_r = \frac{1 - \sin^4 r}{1 + \sin^4 r}.
$$

As $r \to 0$, the Poincaré duality angle $\theta_r \to 0$.

The Poincaré duality angle for M_r

$$\cos \theta_r = \frac{1 - \sin^4 r}{1 + \sin^4 r}.$$

As $r \to 0$, the Poincaré duality angle $\theta_r \to 0$.

As $r \to \pi/2$, $\theta_r \to \pi/2$.

The Poincaré duality angle for M_r

$$\cos \theta_r = \frac{1 - \sin^4 r}{1 + \sin^4 r}.$$

As $r \to 0$, the Poincaré duality angle $\theta_r \to 0$.

As $r \to \pi/2$, $\theta_r \to \pi/2$.

Generalizes to $\mathbb{CP}^n - B_r(p)$.
Consider

\[N_r := G_2 \mathbb{R}^n - \nu_r(G_1 \mathbb{R}^{n-1}) \].
Consider

\[N_r := G_2 \mathbb{R}^n - \nu_r(G_1 \mathbb{R}^{n-1}). \]

Theorem

- As \(r \to 0 \), all the Poincaré duality angles of \(N_r \) go to zero.
- As \(r \) approaches its maximum value of \(\pi/2 \), all the Poincaré duality angles of \(N_r \) go to \(\pi/2 \).
Conjecture

If M^n is a closed Riemannian manifold and N^k is a closed submanifold of codimension ≥ 2, the Poincaré duality angles of

$$M - \nu_r(N)$$

go to zero as $r \to 0$.
What can you learn about the topology of M from knowledge of ∂M?
Electrical Impedance Tomography

Induce potentials on the boundary of a region and determine the conductivity inside the region by measuring the current flux through the boundary.
Induce potentials on the boundary of a region and determine the conductivity inside the region by measuring the current flux through the boundary.
Suppose f is a potential on the boundary of a region $M \subset \mathbb{R}^3$.
Suppose f is a potential on the boundary of a region $M \subset \mathbb{R}^3$.

Then f extends to a potential u on M, where

$$\Delta u = 0, \quad u|_{\partial M} = f.$$
Suppose f is a potential on the boundary of a region $M \subset \mathbb{R}^3$.

Then f extends to a potential u on M, where

$$\Delta u = 0, \quad u|_{\partial M} = f.$$

If γ is the conductivity on M, the current flux through ∂M is given by

$$(\gamma \nabla u) \cdot \nu = -\gamma \frac{\partial u}{\partial \nu}$$
The Dirichlet-to-Neumann map

The map $\Lambda_{cl} : C^\infty(\partial M) \rightarrow C^\infty(\partial M)$ defined by

$$f \mapsto \frac{\partial u}{\partial \nu}$$

is the classical \textit{Dirichlet-to-Neumann map}.
The Dirichlet-to-Neumann map

The map \(\Lambda_{\text{cl}} : C^\infty(\partial M) \rightarrow C^\infty(\partial M) \) defined by

\[
f \mapsto \frac{\partial u}{\partial \nu}
\]

is the classical *Dirichlet-to-Neumann map*.

Theorem (Lee-Uhlmann)

If \(M^n \) is a compact, analytic Riemannian manifold with boundary, then \(M \) is determined up to isometry by \(\Lambda_{\text{cl}} \).
Joshi–Lionheart and Belishev–Sharafutdinov generalized the classical Dirichlet-to-Neumann map to differential forms:

\[\Lambda : \Omega^p(\partial M) \rightarrow \Omega^{n-p-1}(\partial M) \]
Joshi–Lionheart and Belishev–Sharafutdinov generalized the classical Dirichlet-to-Neumann map to differential forms:

$$\Lambda : \Omega^p(\partial M) \rightarrow \Omega^{n-p-1}(\partial M)$$

If $\varphi \in \Omega^p(\partial M)$, then let ω solve the boundary value problem

$$\Delta \omega = 0, \quad i^* \omega = \varphi, \quad i^* \delta \omega = 0.$$
Joshi–Lionheart and Belishev–Sharafutdinov generalized the classical Dirichlet-to-Neumann map to differential forms:

\[\Lambda : \Omega^p(\partial M) \rightarrow \Omega^{n-p-1}(\partial M) \]

If \(\varphi \in \Omega^p(\partial M) \), then let \(\omega \) solve the boundary value problem

\[\Delta \omega = 0, \quad i^* \omega = \varphi, \quad i^* \delta \omega = 0. \]

Define

\[\Lambda \varphi := i^* \star d\omega. \]
Joshi–Lionheart and Belishev–Sharafutdinov generalized the classical Dirichlet-to-Neumann map to differential forms:

\[\Lambda : \Omega^p(\partial M) \rightarrow \Omega^{n-p-1}(\partial M) \]

If \(\varphi \in \Omega^p(\partial M) \), then let \(\omega \) solve the boundary value problem

\[\Delta \omega = 0, \quad i^*\omega = \varphi, \quad i^*\delta \omega = 0. \]

Define

\[\Lambda \varphi := i^* \ast d\omega. \]

If \(f \in \Omega^0(\partial M) \),

\[\Lambda f = i^* \ast du = \frac{\partial u}{\partial \nu} \text{dvol}_{\partial M} = (\Lambda_{\text{cl}} f) \text{dvol}_{\partial M} \]
Theorem (Belishev–Sharafutdinov)

The data \((\partial M, \Lambda)\) completely determines the cohomology groups of \(M\).
Define the *Hilbert transform* $T := d\Lambda^{-1}$.
Define the *Hilbert transform* $T := d\Lambda^{-1}$.

Theorem

If $\theta_1, \ldots, \theta_k$ are the Poincaré duality angles of M in dimension p, then the quantities

$$(-1)^{np+n+p} \cos^2 \theta_i$$

are the non-zero eigenvalues of an appropriate restriction of T^2.
Idea of the Proof

\[\cos \theta \]

\[\cos^2 \theta \]

The Hilbert transform \(T \) recaptures the orthogonal projection \(H \mathbb{P} \mathbb{N}(M) \rightarrow H \mathbb{P} \mathbb{D}(M) \).
The Hilbert transform T recaptures the orthogonal projection $\mathcal{H}_N^p(M) \rightarrow \mathcal{H}_D^p(M)$.
Belishev and Sharafutdinov posed the following question:

Can the multiplicative structure of cohomologies be recovered from our data \((\partial M, \Lambda)\)? Till now, the authors cannot answer the question.
Belishev and Sharafutdinov posed the following question:

Can the multiplicative structure of cohomologies be recovered from our data $(\partial M, \Lambda)$? Till now, the authors cannot answer the question.

Theorem

The mixed cup product

\[\cup : H^p(M; \mathbb{R}) \times H^q(M, \partial M; \mathbb{R}) \rightarrow H^{p+q}(M, \partial M; \mathbb{R}) \]

is completely determined by the data $(\partial M, \Lambda)$ when the relative class is restricted to come from the boundary subspace.
Thanks!