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Realizing cohomology groups as spaces of differential forms

Let Mn be a compact Riemannian manifold with non-empty
boundary ∂M.
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de Rham’s Theorem

de Rham’s Theorem
Suppose Mn is a compact, oriented, smooth manifold. Then

Hp(M; R) ∼= Cp(M)/Ep(M),

where Cp(M) is the space of closed p-forms on M and Ep(M) is
the space of exact p-forms.



Riemannian metric

If M is Riemannian, the metric induces an L2 inner product on
Ωp(M):

〈ω, η〉 :=

∫
M
ω ∧ ? η.

When M is closed, the orthogonal complement of Ep(M) inside
Cp(M) is

Hp(M) := {ω ∈ Ωp(M) : dω = 0, δω = 0}

Kodaira called this the space of harmonic p-fields on M.
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Hodge–Morrey–Friedrichs Decomposition

Define i : ∂M ↪→ M to be the natural inclusion.

The L2-orthogonal complement of the exact forms inside the space
of closed forms is now:

Hp
N(M) := {ω ∈ Ωp(M) : dω = 0, δω = 0, i∗? ω = 0}.
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(∑
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)
∧ dxn,

meaning that ω has no dxn in it.
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Hodge–Morrey–Friedrichs Decomposition (continued)

The relative cohomology appears as

Hp(M, ∂M; R) ∼= Hp
D(M).

Hp
D(M) := {ω ∈ Ωp(M) : dω = 0, δω = 0, i∗ω = 0}.
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Non-orthogonality

The concrete realizations of Hp(M; R) and Hp(M, ∂M; R) meet
only at the origin:

Hp
N(M) ∩Hp

D(M) = {0}

...but they are not orthogonal!
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Interior and boundary subspaces

Interior subspace of Hp
N(M):

ker i∗ where i∗ : Hp(M; R) → Hp(∂M; R)

E∂Hp
N(M) := {ω ∈ Hp

N(M) : i∗ω = dϕ,ϕ ∈ Ωp−1(∂M)}.

Interior subspace of Hp
D(M):

? E∂Hn−p
N (M) = cE∂Hp

D(M)

= {η ∈ Hp
D(M) : i∗? η = dψ,ψ ∈ Ωn−p−1(∂M)}.
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Poincaré duality angles

To prove that there is an element of cEHp
N (M) having arbitrary preassigned periods on

cp
1, . . . c

p
g, it suffices to show that (F1, . . . , Fg) !→ (C1, . . . , Cg) is an isomorphism.

Suppose some set of F -values gives all zero C-values, meaning that i∗η is zero in the cohomology

of ∂M . In other words, the form i∗η is exact, meaning that η ∈ E∂Hp
N (M), the interior subspace

of Hp
N (M). Since E∂Hp

N (M) is orthogonal to cEHp
N (M), this implies that η = 0, so η̃ = ± # η = 0

and hence the periods Fi of η̃ must have been zero.

Therefore, the map (F1, . . . , Fg) !→ (C1, . . . , Cg) is an isomorphism, completing Step 1.

Step 2: Let ω ∈ Hp
N (M) and let C1, . . . , Cg be the periods of ω on the above p-cycles

cp
1, . . . , c

p
g. Let α ∈ cEHp

N (M) be the unique form guaranteed by Step 1 having the same periods

on this homology basis.

Then β = ω − α has zero periods on the p-cycles cp
1, . . . , c

p
g; since β is a closed form on M , it

certainly has zero period on each p-cycle of ∂M which bounds in M . Hence, β has zero periods

on all p-cycles of ∂M , meaning that i∗β is exact, so β ∈ E∂Hp
N (M).

Therefore, ω = α + β ∈ cEHp
N (M) + E∂Hp

N (M), so Hp
N (M) is indeed the sum of these two

subspaces, as claimed in (2.1.8). This completes the proof of the theorem.

Theorem 2.1.2 allows the details of Figure 1.1 to be filled in, as shown in Figure 2.1.
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Definition (DeTurck–Gluck)

The Poincaré duality angles of the Riemannian manifold M are the
principal angles between the interior subspaces.



What do the Poincaré duality angles tell you?

Guess
If M is “almost” closed, the Poincaré duality angles of M should
be small.



For example...

Consider CP2 with its usual Fubini-Study metric. Let p ∈ CP2.
Then define

Mr := CP2 − Br (p).

CP1

p

π/2
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Topology of Mr

∂Mr is a 3-sphere.

Mr is the D2-bundle over CP1 (' S2(1/2)) with Euler
characteristic 1.

Mr has absolute cohomology in dimensions 0 and 2.

Mr has relative cohomology in dimensions 2 and 4.

Therefore, Mr has a single Poincaré duality angle θr between
H2

N(Mr ) and H2
D(Mr ).
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H2

N(Mr ) and H2
D(Mr ).



Topology of Mr

∂Mr is a 3-sphere.

Mr is the D2-bundle over CP1 (' S2(1/2)) with Euler
characteristic 1.

Mr has absolute cohomology in dimensions 0 and 2.

Mr has relative cohomology in dimensions 2 and 4.

Therefore, Mr has a single Poincaré duality angle θr between
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Find harmonic 2-fields

So the goal is to find closed and co-closed 2-forms on Mr which
satisfy Neumann and Dirichlet boundary conditions.

Such 2-forms must be isometry-invariant.

Isom0(Mr ) = SU(2).

Find closed and co-closed SU(2)-invariant forms on Mr satisfying
Neumann and Dirichlet boundary conditions
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Hypersurfaces

CP1

p

π/2

The hypersurfaces at constant distance t from CP1 are Berger
3-spheres:

S3(cos t)sin t
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The Poincaré duality angle for Mr

cos θr =
1− sin4 r

1 + sin4 r
.

As r → 0, the Poincaré duality angle θr → 0.

As r → π/2, θr → π/2.

Generalizes to CPn − Br (p).
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As r → 0, the Poincaré duality angle θr → 0.

As r → π/2, θr → π/2.

Generalizes to CPn − Br (p).
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Poincaré duality angles of Grassmannians

Consider
Nr := G2Rn − νr (G1Rn−1).

Theorem

• As r → 0, all the Poincaré duality angles of Nr go to zero.

• As r approaches its maximum value of π/2, all the Poincaré
duality angles of Nr go to π/2.
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A conjecture

Conjecture

If Mn is a closed Riemannian manifold and Nk is a closed
submanifold of codimension ≥ 2, the Poincaré duality angles of

M − νr (N)

go to zero as r → 0.



A question

What can you learn about the topology of M from knowledge of ∂M?



Electrical Impedance Tomography

Induce potentials on the boundary of a region and determine the
conductivity inside the region by measuring the current flux
through the boundary.
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The Voltage-to-Current map

Suppose f is a potential on the boundary of a region M ⊂ R3.

Then f extends to a potential u on M, where

∆u = 0, u|∂M = f .

If γ is the conductivity on M, the current flux through ∂M is given
by

(γ∇u) · ν = −γ ∂u

∂ν
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The Dirichlet-to-Neumann map

The map Λcl : C∞(∂M) → C∞(∂M) defined by

f 7→ ∂u

∂ν

is the classical Dirichlet-to-Neumann map.

Theorem (Lee-Uhlmann)

If Mn is a compact, analytic Riemannian manifold with boundary,
then M is determined up to isometry by Λcl.



The Dirichlet-to-Neumann map

The map Λcl : C∞(∂M) → C∞(∂M) defined by

f 7→ ∂u

∂ν

is the classical Dirichlet-to-Neumann map.

Theorem (Lee-Uhlmann)

If Mn is a compact, analytic Riemannian manifold with boundary,
then M is determined up to isometry by Λcl.



Generalization to differential forms

Joshi–Lionheart and Belishev–Sharafutdinov generalized the
classical Dirichlet-to-Neumann map to differential forms:

Λ : Ωp(∂M) → Ωn−p−1(∂M)

If ϕ ∈ Ωp(∂M), then let ω solve the boundary value problem

∆ω = 0, i∗ω = ϕ, i∗δω = 0.

Define
Λϕ := i∗? dω.

If f ∈ Ω0(∂M),

Λf = i∗? du =
∂u

∂ν
dvol∂M = (Λclf ) dvol∂M
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Boundary data → topology

Theorem (Belishev–Sharafutdinov)

The data (∂M,Λ) completely determines the cohomology groups
of M.



Connection to Poincaré duality angles

Define the Hilbert transform T := dΛ−1.

Theorem
If θ1, . . . , θk are the Poincaré duality angles of M in dimension p,
then the quantities

(−1)np+n+p cos2 θi

are the non-zero eigenvalues of an appropriate restriction of T 2.
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Idea of the Proof

1

cos θ

θ
cos

2 θ

The Hilbert transform T recaptures the orthogonal projection
Hp

N(M) → Hp
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Cup products

Belishev and Sharafutdinov posed the following question:

Can the multiplicative structure of cohomologies be
recovered from our data (∂M,Λ)? Till now, the authors
cannot answer the question.

Theorem
The mixed cup product

∪ : Hp(M; R)× Hq(M, ∂M; R) → Hp+q(M, ∂M; R)

is completely determined by the data (∂M,Λ) when the relative
class is restricted to come from the boundary subspace.
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Thanks!


