Poincaré Duality Angles on Riemannian Manifolds with Boundary

Clayton Shonkwiler

Department of Mathematics Haverford College

September 15, 2009

(日) (四) (문) (문) (문)

Realizing cohomology groups as spaces of differential forms

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let M^n be a compact Riemannian manifold with non-empty boundary ∂M .

Realizing cohomology groups as spaces of differential forms

Let M^n be a compact Riemannian manifold with non-empty boundary ∂M .

de Rham's Theorem

de Rham's Theorem

Suppose M^n is a compact, oriented, smooth manifold. Then

 $H^p(M;\mathbb{R})\cong \mathcal{C}^p(M)/\mathcal{E}^p(M),$

where $C^{p}(M)$ is the space of closed p-forms on M and $\mathcal{E}^{p}(M)$ is the space of exact p-forms.

Riemannian metric

If *M* is Riemannian, the metric induces an L^2 inner product on $\Omega^p(M)$:

$$\langle \omega, \eta \rangle := \int_M \omega \wedge \star \eta.$$

Riemannian metric

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

If *M* is Riemannian, the metric induces an L^2 inner product on $\Omega^p(M)$:

$$\langle \omega, \eta \rangle := \int_M \omega \wedge \star \eta.$$

When M is closed, the orthogonal complement of $\mathcal{E}^{p}(M)$ inside $\mathcal{C}^{p}(M)$ is

$$\mathcal{H}^p(M) := \{ \omega \in \Omega^p(M) : d\omega = 0, \delta \omega = 0 \}$$

Riemannian metric

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

If *M* is Riemannian, the metric induces an L^2 inner product on $\Omega^p(M)$:

$$\langle \omega, \eta \rangle := \int_M \omega \wedge \star \eta.$$

When M is closed, the orthogonal complement of $\mathcal{E}^p(M)$ inside $\mathcal{C}^p(M)$ is

$$\mathcal{H}^{p}(M) := \{ \omega \in \Omega^{p}(M) : d\omega = 0, \delta \omega = 0 \}$$

Kodaira called this the space of *harmonic p-fields* on *M*.

Hodge's Theorem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hodge's Theorem

If M^n is a closed, oriented, smooth Riemannian manifold,

 $H^p(M;\mathbb{R})\cong \mathcal{H}^p(M).$

Hodge–Morrey–Friedrichs Decomposition

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Define $i : \partial M \hookrightarrow M$ to be the natural inclusion.

Hodge-Morrey-Friedrichs Decomposition

Define $i : \partial M \hookrightarrow M$ to be the natural inclusion.

The L^2 -orthogonal complement of the exact forms inside the space of closed forms is now:

$$\mathcal{H}^{p}_{N}(M) := \{ \omega \in \Omega^{p}(M) : d\omega = 0, \delta \omega = 0, i^{*} \star \omega = 0 \}.$$

$$i^*\star\omega=0$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Suppose dx_n corresponds to the normal direction.

If $i^* \star \omega = 0$, then

$$i^*\star\omega=0$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Suppose dx_n corresponds to the normal direction.

If $i^* \star \omega = 0$, then

$$\star \omega = \left(\sum f_I dx_I\right) \wedge dx_n,$$

$$i^*\star\omega=0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Suppose dx_n corresponds to the normal direction.

If $i^* \star \omega = 0$, then

$$\star\omega=\left(\sum f_{I}dx_{I}\right)\wedge dx_{n},$$

meaning that ω has no dx_n in it.

Hodge-Morrey-Friedrichs Decomposition

Define $i : \partial M \hookrightarrow M$ to be the natural inclusion.

The L^2 -orthogonal complement of the exact forms inside the space of closed forms is now:

$$\mathcal{H}^{p}_{N}(M) := \{ \omega \in \Omega^{p}(M) : d\omega = 0, \delta \omega = 0, i^{*} \star \omega = 0 \}.$$

Hodge-Morrey-Friedrichs Decomposition

Define $i : \partial M \hookrightarrow M$ to be the natural inclusion.

The L^2 -orthogonal complement of the exact forms inside the space of closed forms is now:

$$\mathcal{H}^{p}_{N}(M) := \{ \omega \in \Omega^{p}(M) : d\omega = 0, \delta \omega = 0, i^{*} \star \omega = 0 \}.$$

Then

$$H^p(M;\mathbb{R})\cong \mathcal{H}^p_N(M).$$

Hodge-Morrey-Friedrichs Decomposition (continued)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The relative cohomology appears as

 $H^p(M, \partial M; \mathbb{R}) \cong \mathcal{H}^p_D(M).$

Hodge–Morrey–Friedrichs Decomposition (continued)

The relative cohomology appears as

 $H^p(M, \partial M; \mathbb{R}) \cong \mathcal{H}^p_D(M).$

$$\mathcal{H}^{p}_{D}(M) := \{ \omega \in \Omega^{p}(M) : d\omega = 0, \delta \omega = 0, i^{*}\omega = 0 \}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Non-orthogonality

・ロト・日本・モート モー うへぐ

The concrete realizations of $H^p(M; \mathbb{R})$ and $H^p(M, \partial M; \mathbb{R})$ meet only at the origin:

 $\mathcal{H}^p_N(M)\cap\mathcal{H}^p_D(M)=\{0\}$

Non-orthogonality

The concrete realizations of $H^p(M; \mathbb{R})$ and $H^p(M, \partial M; \mathbb{R})$ meet only at the origin:

$$\mathcal{H}^p_N(M)\cap\mathcal{H}^p_D(M)=\{0\}$$

...but they are not orthogonal!

Non-orthogonality

◆□> ◆□> ◆豆> ◆豆> □豆

The concrete realizations of $H^p(M; \mathbb{R})$ and $H^p(M, \partial M; \mathbb{R})$ meet only at the origin:

```
\mathcal{H}^p_N(M)\cap\mathcal{H}^p_D(M)=\{0\}
```

...but they are not orthogonal!

Interior and boundary subspaces

Interior subspace of $\mathcal{H}^{p}_{N}(M)$:

```
ker i^* where i^* : H^p(M; \mathbb{R}) \to H^p(\partial M; \mathbb{R})
```

Interior and boundary subspaces

Interior subspace of $\mathcal{H}^{p}_{N}(M)$:

ker
$$i^*$$
 where $i^* : H^p(M; \mathbb{R}) \to H^p(\partial M; \mathbb{R})$

$$\mathcal{E}_{\partial}\mathcal{H}^{p}_{N}(M) := \{ \omega \in \mathcal{H}^{p}_{N}(M) : i^{*}\omega = d\varphi, \varphi \in \Omega^{p-1}(\partial M) \}.$$

Interior and boundary subspaces

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Interior subspace of $\mathcal{H}^{p}_{N}(M)$:

ker
$$i^*$$
 where $i^* : H^p(M; \mathbb{R}) \to H^p(\partial M; \mathbb{R})$

$$\mathcal{E}_{\partial}\mathcal{H}^{p}_{N}(M) := \{ \omega \in \mathcal{H}^{p}_{N}(M) : i^{*}\omega = d\varphi, \varphi \in \Omega^{p-1}(\partial M) \}.$$

Interior subspace of $\mathcal{H}^{p}_{D}(M)$:

$$\star \mathcal{E}_{\partial} \mathcal{H}_{N}^{n-p}(M) = c \mathcal{E}_{\partial} \mathcal{H}_{D}^{p}(M)$$

= { $\eta \in \mathcal{H}_{D}^{p}(M) : i^{*} \star \eta = d\psi, \psi \in \Omega^{n-p-1}(\partial M)$ }.

Poincaré duality angles

Definition (DeTurck-Gluck)

The *Poincaré duality angles* of the Riemannian manifold M are the principal angles between the interior subspaces.

What do the Poincaré duality angles tell you?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Guess

If M is "almost" closed, the Poincaré duality angles of M should be small.

For example...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Consider \mathbb{CP}^2 with its usual Fubini-Study metric. Let $p \in \mathbb{CP}^2$. Then define

$$M_r := \mathbb{CP}^2 - B_r(p).$$

For example...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Consider \mathbb{CP}^2 with its usual Fubini-Study metric. Let $p \in \mathbb{CP}^2$. Then define

$$M_r := \mathbb{CP}^2 - B_r(p).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 ∂M_r is a 3-sphere.

 ∂M_r is a 3-sphere.

 M_r is the D^2 -bundle over \mathbb{CP}^1 ($\simeq S^2(1/2)$) with Euler characteristic 1.

 ∂M_r is a 3-sphere.

 M_r is the D^2 -bundle over \mathbb{CP}^1 ($\simeq S^2(1/2)$) with Euler characteristic 1.

 M_r has absolute cohomology in dimensions 0 and 2.

 ∂M_r is a 3-sphere.

 M_r is the D^2 -bundle over \mathbb{CP}^1 ($\simeq S^2(1/2)$) with Euler characteristic 1.

 M_r has absolute cohomology in dimensions 0 and 2.

 M_r has relative cohomology in dimensions 2 and 4.

 ∂M_r is a 3-sphere.

 M_r is the D^2 -bundle over \mathbb{CP}^1 ($\simeq S^2(1/2)$) with Euler characteristic 1.

 M_r has absolute cohomology in dimensions 0 and 2.

 M_r has relative cohomology in dimensions 2 and 4.

Therefore, M_r has a single Poincaré duality angle θ_r between $\mathcal{H}^2_N(M_r)$ and $\mathcal{H}^2_D(M_r)$.

(ロ)、(型)、(E)、(E)、 E) の(の)

So the goal is to find closed and co-closed 2-forms on M_r which satisfy Neumann and Dirichlet boundary conditions.

So the goal is to find closed and co-closed 2-forms on M_r which satisfy Neumann and Dirichlet boundary conditions.

Such 2-forms must be isometry-invariant.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

So the goal is to find closed and co-closed 2-forms on M_r which satisfy Neumann and Dirichlet boundary conditions.

Such 2-forms must be isometry-invariant.

 $\operatorname{Isom}_0(M_r) = SU(2).$

So the goal is to find closed and co-closed 2-forms on M_r which satisfy Neumann and Dirichlet boundary conditions.

Such 2-forms must be isometry-invariant.

 $\operatorname{Isom}_0(M_r) = SU(2).$

Find closed and co-closed SU(2)-invariant forms on M_r satisfying Neumann and Dirichlet boundary conditions

Hypersurfaces

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Hypersurfaces

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The hypersurfaces at constant distance t from \mathbb{CP}^1 are Berger 3-spheres:

 $S^3(\cos t)_{\sin t}$

$$\cos\theta_r = \frac{1-\sin^4 r}{1+\sin^4 r}.$$

$$\cos\theta_r = \frac{1-\sin^4 r}{1+\sin^4 r}.$$

As $r \to 0$, the Poincaré duality angle $\theta_r \to 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\cos\theta_r = \frac{1-\sin^4 r}{1+\sin^4 r}.$$

As $r \to 0$, the Poincaré duality angle $\theta_r \to 0$.

As $r \to \pi/2$, $\theta_r \to \pi/2$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\cos\theta_r = \frac{1-\sin^4 r}{1+\sin^4 r}.$$

As $r \to 0$, the Poincaré duality angle $\theta_r \to 0$.

As
$$r \to \pi/2$$
, $\theta_r \to \pi/2$.

Generalizes to $\mathbb{CP}^n - B_r(p)$.

Poincaré duality angles of Grassmannians

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Consider

$$N_r := G_2 \mathbb{R}^n - \nu_r (G_1 \mathbb{R}^{n-1}).$$

Poincaré duality angles of Grassmannians

Consider

$$N_r := G_2 \mathbb{R}^n - \nu_r (G_1 \mathbb{R}^{n-1}).$$

Theorem

- As $r \rightarrow 0$, all the Poincaré duality angles of N_r go to zero.
- As r approaches its maximum value of π/2, all the Poincaré duality angles of N_r go to π/2.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conjecture

If M^n is a closed Riemannian manifold and N^k is a closed submanifold of codimension ≥ 2 , the Poincaré duality angles of

 $M - \nu_r(N)$

go to zero as $r \rightarrow 0$.

A question

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

What can you learn about the topology of *M* from knowledge of ∂M ?

Electrical Impedance Tomography

Induce potentials on the boundary of a region and determine the conductivity inside the region by measuring the current flux through the boundary.

Electrical Impedance Tomography

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Induce potentials on the boundary of a region and determine the conductivity inside the region by measuring the current flux through the boundary.

The Voltage-to-Current map

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Suppose f is a potential on the boundary of a region $M \subset \mathbb{R}^3$.

The Voltage-to-Current map

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Suppose f is a potential on the boundary of a region $M \subset \mathbb{R}^3$.

Then f extends to a potential u on M, where

$$\Delta u = 0, \quad u|_{\partial M} = f.$$

The Voltage-to-Current map

Suppose f is a potential on the boundary of a region $M \subset \mathbb{R}^3$.

Then f extends to a potential u on M, where

$$\Delta u = 0, \quad u|_{\partial M} = f.$$

If γ is the conductivity on M, the current flux through ∂M is given by

$$(\gamma \nabla u) \cdot \nu = -\gamma \frac{\partial u}{\partial \nu}$$

The Dirichlet-to-Neumann map

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The map $\Lambda_{cl}: C^{\infty}(\partial M) \to C^{\infty}(\partial M)$ defined by

$$f\mapsto rac{\partial u}{\partial
u}$$

is the classical Dirichlet-to-Neumann map.

The Dirichlet-to-Neumann map

The map $\Lambda_{cl}: C^{\infty}(\partial M) \to C^{\infty}(\partial M)$ defined by

$$f\mapsto rac{\partial u}{\partial
u}$$

is the classical Dirichlet-to-Neumann map.

Theorem (Lee-Uhlmann)

If M^n is a compact, analytic Riemannian manifold with boundary, then M is determined up to isometry by Λ_{cl} .

Joshi–Lionheart and Belishev–Sharafutdinov generalized the classical Dirichlet-to-Neumann map to differential forms:

 $\Lambda:\Omega^p(\partial M)\to\Omega^{n-p-1}(\partial M)$

Joshi–Lionheart and Belishev–Sharafutdinov generalized the classical Dirichlet-to-Neumann map to differential forms:

$$\Lambda:\Omega^p(\partial M)\to\Omega^{n-p-1}(\partial M)$$

If $\varphi \in \Omega^p(\partial M)$, then let ω solve the boundary value problem

$$\Delta \omega = 0, \quad i^* \omega = \varphi, \quad i^* \delta \omega = 0.$$

Joshi–Lionheart and Belishev–Sharafutdinov generalized the classical Dirichlet-to-Neumann map to differential forms:

$$\Lambda:\Omega^p(\partial M)\to\Omega^{n-p-1}(\partial M)$$

If $\varphi \in \Omega^p(\partial M)$, then let ω solve the boundary value problem

$$\Delta \omega = 0, \quad i^* \omega = \varphi, \quad i^* \delta \omega = 0.$$

Define

$$\Lambda \varphi := i^* \star d\omega.$$

Joshi–Lionheart and Belishev–Sharafutdinov generalized the classical Dirichlet-to-Neumann map to differential forms:

$$\Lambda:\Omega^p(\partial M)\to\Omega^{n-p-1}(\partial M)$$

If $\varphi \in \Omega^{p}(\partial M)$, then let ω solve the boundary value problem

$$\Delta \omega = 0, \quad i^* \omega = \varphi, \quad i^* \delta \omega = 0.$$

Define

$$\Lambda \varphi := i^* \star d\omega.$$

If $f \in \Omega^0(\partial M)$, $\Lambda f = i^* \star du = \frac{\partial u}{\partial \nu} d\text{vol}_{\partial M} = (\Lambda_{cl} f) d\text{vol}_{\partial M}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Belishev–Sharafutdinov)

The data $(\partial M, \Lambda)$ completely determines the cohomology groups of M.

Connection to Poincaré duality angles

Define the *Hilbert transform* $T := d\Lambda^{-1}$.

Connection to Poincaré duality angles

Define the *Hilbert transform* $T := d\Lambda^{-1}$.

Theorem

If $\theta_1, \ldots, \theta_k$ are the Poincaré duality angles of M in dimension p, then the quantities

$$(-1)^{np+n+p}\cos^2\theta_i$$

are the non-zero eigenvalues of an appropriate restriction of T^2 .

Idea of the Proof

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Idea of the Proof

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

The Hilbert transform \mathcal{T} recaptures the orthogonal projection $\mathcal{H}^p_N(M) \to \mathcal{H}^p_D(M)$.

Cup products

Belishev and Sharafutdinov posed the following question:

Can the multiplicative structure of cohomologies be recovered from our data $(\partial M, \Lambda)$? Till now, the authors cannot answer the question.

Cup products

Belishev and Sharafutdinov posed the following question:

Can the multiplicative structure of cohomologies be recovered from our data $(\partial M, \Lambda)$? Till now, the authors cannot answer the question.

Theorem The mixed cup product

 $\cup: H^{p}(M;\mathbb{R}) \times H^{q}(M,\partial M;\mathbb{R}) \to H^{p+q}(M,\partial M;\mathbb{R})$

is completely determined by the data $(\partial M, \Lambda)$ when the relative class is restricted to come from the boundary subspace.

Thanks!