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de Rham's Theorem
Suppose M" is a compact, oriented, smooth manifold. Then

HP(M;R) = CP(M)/EP(M),

where CP(M) is the space of closed p-forms on M and EP(M) is
the space of exact p-forms.
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Riemannian metric

If M is Riemannian, the metric induces an L? inner product on

QP(M):
(w,n) ::/Mw/\*n.

When M is closed, the orthogonal complement of EP(M) inside
CP(M) is

HP(M) :={w € QP(M) : dw = 0, 0w = 0}

Kodaira called this the space of harmonic p-fields on M.



Hodge's Theorem

Hodge's Theorem
If M" s a closed, oriented, smooth Riemannian manifold,

HP(M;R) = HP(M).
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The L?-orthogonal complement of the exact forms inside the space
of closed forms is now:

HRY(M) == {w € QP(M) : dw = 0,0w = 0, i** w = 0}.
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Suppose dx, corresponds to the normal direction.

If i*%xw =0, then

*W = (Z f/dx/) A dx,,

meaning that w has no dx, in it.

I

*xw =20



Hodge—Morrey—Friedrichs Decomposition

Define i : OM — M to be the natural inclusion.

The L?-orthogonal complement of the exact forms inside the space
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Hodge—Morrey—Friedrichs Decomposition

Define i : OM — M to be the natural inclusion.

The L?-orthogonal complement of the exact forms inside the space
of closed forms is now:

HRY(M) == {w € QP(M) : dw = 0,0w = 0, i** w = 0}.

Then
HP(M;R) = H’,i,(/\/l).
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Hodge—Morrey—Friedrichs Decomposition (continued)

The relative cohomology appears as

HP(M,OM; R) 2 HB (M).

HR(M) == {w € QP(M) : dw = 0,0w = 0, i*w = 0}.
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Non-orthogonality
The concrete realizations of HP(M;R) and HP(M,OM; R) meet
only at the origin:

Hy(M) NHB(M) = {0}
but they are not orthogonall!
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Interior and boundary subspaces
Interior subspace of Hy(M):

ker i* where i* : HP(M;R) — HP(OM;R)

EaHR(M) := {w € HR (M) : i*w = dip, o € QP H(OM)}.

Interior subspace of HR(M):

*gaHr,(I—p(M) = CgaHg(M)
= {n € HR(M) : i*xn = dy,sp € Q" P 1 (OM)}.



Poincaré duality angles

Definition (DeTurck—Gluck)

The Poincaré duality angles of the Riemannian manifold M are the
principal angles between the interior subspaces.



What do the Poincaré duality angles tell you?

Guess
If M is “almost” closed, the Poincaré duality angles of M should
be small.



For example...

Consider CP? with its usual Fubini-Study metric. Let p € CP2.
Then define
M, := CP? — B,(p).



For example
Consider CP? with its usual Fubini-Study metric. Let p € CP?.
Then define

M, := CP? — B,(p)
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Topology of M,
OM, is a 3-sphere.

M, is the D?>-bundle over CP! (~ S?(1/2)) with Euler
characteristic 1.

M, has absolute cohomology in dimensions 0 and 2.
M, has relative cohomology in dimensions 2 and 4.

Therefore, M, has a single Poincaré duality angle 8, between
H3,(M,) and H3(M,).
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Find harmonic 2-fields

So the goal is to find closed and co-closed 2-forms on M, which
satisfy Neumann and Dirichlet boundary conditions.

Such 2-forms must be isometry-invariant.

Isomo(M,) = SU(2).

Find closed and co-closed SU(2)-invariant forms on M, satisfying
Neumann and Dirichlet boundary conditions



Hypersurfaces
7r/2




Hypersurfaces
/2

The hypersurfaces at constant distance t from CP!
3-spheres:

are Berger
53(cos t)sin t



The Poincaré duality angle for M,

1—sin*r

cosbr = 1+sin*r



The Poincaré duality angle for M,

1—sin*r

cosbr = 1+sin*r

As r — 0, the Poincaré duality angle 8, — 0.



The Poincaré duality angle for M,

1—sin*r

cosbr = 1+sin*r

As r — 0, the Poincaré duality angle 8, — 0.

Asr— /2,0, — /2.



The Poincaré duality angle for M,

1—sin*r

cosf, = .
" 14sin*r
As r — 0, the Poincaré duality angle 8, — 0.

Asr— /2,0, — /2.

Generalizes to CP" — B,(p).



Poincaré duality angles of Grassmannians
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Poincaré duality angles of Grassmannians

Consider
N, := GR" — V,(Gan_l).

Theorem

e Asr — 0, all the Poincaré duality angles of N, go to zero.

e As r approaches its maximum value of 7 /2, all the Poincaré
duality angles of N, go to 7/2.



A conjecture

Conjecture
If M" is a closed Riemannian manifold and N¥ is a closed
submanifold of codimension > 2, the Poincaré duality angles of

M — v, (N)

go to zero as r — 0.



A question

What can you learn about the topology of M from knowledge of OM?
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The Voltage-to-Current map

Suppose f is a potential on the boundary of a region M C R3.

Then f extends to a potential v on M, where

Au=0, ulgpy="*.

If v is the conductivity on M, the current flux through OM is given
by
ou

(Vu) v = 5"
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The map Ay : C*(OM) — C*>°(OM) defined by
ou

f——

ov

is the classical Dirichlet-to-Neumann map.



The Dirichlet-to-Neumann map

The map Ay : C*(OM) — C*>°(OM) defined by
ou

f——

ov

is the classical Dirichlet-to-Neumann map.

Theorem (Lee-Uhlmann)

If M" is a compact, analytic Riemannian manifold with boundary,
then M is determined up to isometry by N..
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Generalization to differential forms

Joshi—Lionheart and Belishev—Sharafutdinov generalized the
classical Dirichlet-to-Neumann map to differential forms:

A QP(OM) — Q" P~H(OM)

If ¢ € QP(OM), then let w solve the boundary value problem
Aw=0, "w=¢, "ow=0.

Define
Ap = i"x dw.

If £ € QO(OM),

A = i"xdu= %dvola,\/] = (/\df) dVOlaM
v



Boundary data — topology

Theorem (Belishev—=Sharafutdinov)

The data (OM, \) completely determines the cohomology groups
of M.
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Connection to Poincaré duality angles

Define the Hilbert transform T := dA~ L.

Theorem
If 61, ...,0k are the Poincaré duality angles of M in dimension p,

then the quantities
(—1)"PTP cos? 6;

are the non-zero eigenvalues of an appropriate restriction of T2.



Idea of the Proof




Idea of the Proof

cos

The Hilbert transform T recaptures the orthogonal projection
Hy(M) — Hp(M).



Cup products

Belishev and Sharafutdinov posed the following question:

Can the multiplicative structure of cohomologies be
recovered from our data (OM,N\)? Till now, the authors
cannot answer the question.



Cup products

Belishev and Sharafutdinov posed the following question:

Can the multiplicative structure of cohomologies be
recovered from our data (OM,N\)? Till now, the authors
cannot answer the question.

Theorem
The mixed cup product

Ut HP(M;R) x HI(M,0M;R) — HPT9(M,OM; R)

is completely determined by the data (OM, \) when the relative
class is restricted to come from the boundary subspace.



Thanks!



