Poincaré Duality Angles on Riemannian Manifolds with Boundary

Clayton Shonkwiler

Department of Mathematics
University of Pennsylvania

April 7, 2009
Realizing cohomology groups as spaces of differential forms

Let M^n be a compact Riemannian manifold with non-empty boundary ∂M.
Realizing cohomology groups as spaces of differential forms

Let M^n be a compact Riemannian manifold with non-empty boundary ∂M.

\[H^p(M; \mathbb{R}) \]
\[H^p(M, \partial M; \mathbb{R}) \]
de Rham’s Theorem

Suppose M^n is a compact, oriented, smooth manifold. Then

$$H^p(M; \mathbb{R}) \cong \frac{C^p(M)}{E^p(M)},$$

where $C^p(M)$ is the space of closed p-forms on M and $E^p(M)$ is the space of exact p-forms.
If M is Riemannian, the metric induces an L^2 inner product on $\Omega^p(M)$:

$$\langle \omega, \eta \rangle := \int_M \omega \wedge \star \eta.$$
If M is Riemannian, the metric induces an L^2 inner product on $\Omega^p(M)$:

$$\langle \omega, \eta \rangle := \int_M \omega \wedge \ast \eta.$$

When M is closed, the orthogonal complement of $\mathcal{E}^p(M)$ inside $\mathcal{C}^p(M)$ is

$$\mathcal{H}^p(M) := \{ \omega \in \Omega^p(M) : d\omega = 0, \delta\omega = 0 \}$$
If M is Riemannian, the metric induces an L^2 inner product on $\Omega^p(M)$:

$$\langle \omega, \eta \rangle := \int_M \omega \wedge \star \eta.$$

When M is closed, the orthogonal complement of $\mathcal{E}^p(M)$ inside $C^p(M)$ is

$$\mathcal{H}^p(M) := \{ \omega \in \Omega^p(M) : d\omega = 0, \delta \omega = 0 \}$$

Kodaira called this the space of harmonic p-fields on M.
Hodge’s Theorem

If M^n is a closed, oriented, smooth Riemannian manifold,

$$H^p(M; \mathbb{R}) \cong \mathcal{H}^p(M).$$
Define $i : \partial M \hookrightarrow M$ to be the natural inclusion.
Define $i : \partial M \hookrightarrow M$ to be the natural inclusion.

The L^2-orthogonal complement of the exact forms inside the space of closed forms is now:

$$\mathcal{H}_N^p(M) := \{ \omega \in \Omega^p(M) : d\omega = 0, \delta \omega = 0, i^* \ast \omega = 0 \}.$$
Define $i : \partial M \hookrightarrow M$ to be the natural inclusion.

The L^2-orthogonal complement of the exact forms inside the space of closed forms is now:

$$\mathcal{H}_N^p(M) := \{ \omega \in \Omega^p(M) : d\omega = 0, \delta \omega = 0, i^* \star \omega = 0 \}.$$

Then

$$H^p(M; \mathbb{R}) \cong \mathcal{H}_N^p(M).$$
The relative cohomology appears as

\[H^p(M, \partial M; \mathbb{R}) \cong \mathcal{H}_D^p(M). \]
The relative cohomology appears as

$$H^p(M, \partial M; \mathbb{R}) \cong \mathcal{H}^p_D(M).$$

$$\mathcal{H}^p_D(M) := \{ \omega \in \Omega^p(M) : d\omega = 0, \delta \omega = 0, i^* \omega = 0 \}.$$
The concrete realizations of $H^p(M; \mathbb{R})$ and $H^p(M, \partial M; \mathbb{R})$ meet only at the origin:

$$\mathcal{H}^p_N(M) \cap \mathcal{H}^p_D(M) = \{0\}$$
The concrete realizations of $H^p(M; \mathbb{R})$ and $H^p(M, \partial M; \mathbb{R})$ meet only at the origin:

$$\mathcal{H}_N^p(M) \cap \mathcal{H}_D^p(M) = \{0\}$$

...but they are not orthogonal!
The concrete realizations of $H^p(M; \mathbb{R})$ and $H^p(M, \partial M; \mathbb{R})$ meet only at the origin:

$$\mathcal{H}^p_N(M) \cap \mathcal{H}^p_D(M) = \{0\}$$

...but they are not orthogonal!
Definition (DeTurck–Gluck)

The *Poincaré duality angles* of the Riemannian manifold M are the principal angles between the interior subspaces.
Guess
If M is “almost” closed, the Poincaré duality angles of M should be small.
Consider \mathbb{CP}^2 with its usual Fubini-Study metric. Let $p \in \mathbb{CP}^2$. Then define

$$M_r := \mathbb{CP}^2 - B_r(p).$$
Consider \mathbb{CP}^2 with its usual Fubini-Study metric. Let $p \in \mathbb{CP}^2$. Then define

$$M_r := \mathbb{CP}^2 - B_r(p).$$
\[\partial M_r \text{ is a 3-sphere.} \]
\[\partial M_r \text{ is a 3-sphere.} \]

\[M_r \text{ is the } D^2\text{-bundle over } \mathbb{CP}^1 (\simeq S^2(1/2)) \text{ with Euler characteristic 1.} \]
\[\partial M_r \] is a 3-sphere.

\[M_r \] is the D^2-bundle over $\mathbb{CP}^1 (\simeq S^2(1/2))$ with Euler characteristic 1.

\[M_r \] has absolute cohomology in dimensions 0 and 2.
∂M_r is a 3-sphere.

M_r is the D^2-bundle over $\mathbb{C}P^1 \ (\cong S^2(1/2))$ with Euler characteristic 1.

M_r has absolute cohomology in dimensions 0 and 2.

M_r has relative cohomology in dimensions 2 and 4.
\partial M_r is a 3-sphere.

\(M_r \) is the \(D^2 \)-bundle over \(\mathbb{CP}^1 \) (\(\cong S^2(1/2) \)) with Euler characteristic 1.

\(M_r \) has absolute cohomology in dimensions 0 and 2.

\(M_r \) has relative cohomology in dimensions 2 and 4.

Therefore, \(M_r \) has a single Poincaré duality angle \(\theta_r \) between \(\mathcal{H}^2_N(M_r) \) and \(\mathcal{H}^2_D(M_r) \).
Find harmonic 2-fields

So the goal is to find closed and co-closed 2-forms on M_r which satisfy Neumann and Dirichlet boundary conditions.
So the goal is to find closed and co-closed 2-forms on M_r which satisfy Neumann and Dirichlet boundary conditions.

Such 2-forms must be isometry-invariant.
Find harmonic 2-fields

So the goal is to find closed and co-closed 2-forms on M_r which satisfy Neumann and Dirichlet boundary conditions.

Such 2-forms must be isometry-invariant.

$$\text{Isom}_0(M_r) = SU(2).$$
So the goal is to find closed and co-closed 2-forms on M_r which satisfy Neumann and Dirichlet boundary conditions.

Such 2-forms must be isometry-invariant.

$$\text{Isom}_0(M_r) = SU(2).$$

Find closed and co-closed $SU(2)$-invariant forms on M_r satisfying Neumann and Dirichlet boundary conditions.
The Poincaré duality angle for M_r

\[
\cos \theta_r = \frac{1 - \sin^4 r}{1 + \sin^4 r}.
\]
The Poincaré duality angle for M_r

$$\cos \theta_r = \frac{1 - \sin^4 r}{1 + \sin^4 r}. $$

As $r \to 0$, the Poincaré duality angle $\theta_r \to 0$.
The Poincaré duality angle for M_r

$$\cos \theta_r = \frac{1 - \sin^4 r}{1 + \sin^4 r}.$$

As $r \to 0$, the Poincaré duality angle $\theta_r \to 0$.

As $r \to \pi/2$, $\theta_r \to \pi/2$.
The Poincaré duality angle for M_r

\[\cos \theta_r = \frac{1 - \sin^4 r}{1 + \sin^4 r}. \]

As $r \to 0$, the Poincaré duality angle $\theta_r \to 0$.

As $r \to \pi/2$, $\theta_r \to \pi/2$.

Generalizes to $\mathbb{CP}^n - B_r(p)$.
Consider

\[N_r \defeq G_2 \mathbb{R}^n - \nu_r(G_1 \mathbb{R}^{n-1}) . \]
Consider

\[N_r := G_2 \mathbb{R}^n - \nu_r(G_1 \mathbb{R}^{n-1}). \]

Theorem

- As \(r \to 0 \), all the Poincaré duality angles of \(N_r \) go to zero.
- As \(r \) approaches its maximum value of \(\pi/2 \), all the Poincaré duality angles of \(N_r \) go to \(\pi/2 \).
Conjecture

If M^n is a closed Riemannian manifold and N^k is a closed submanifold of codimension ≥ 2, the Poincaré duality angles of

$$ M - \nu_r(N) $$

go to zero as $r \to 0$.

A question

What can you learn about the topology of M from knowledge of ∂M?
Induce potentials on the boundary of a region and determine the conductivity inside the region by measuring the current flux through the boundary.
Induce potentials on the boundary of a region and determine the conductivity inside the region by measuring the current flux through the boundary.
Suppose f is a potential on the boundary of a region $M \subset \mathbb{R}^3$.
The Voltage-to-Current map

Suppose \(f \) is a potential on the boundary of a region \(M \subset \mathbb{R}^3 \).

Then \(f \) extends to a potential \(u \) on \(M \), where

\[
\Delta u = 0, \quad u|_{\partial M} = f.
\]
Suppose f is a potential on the boundary of a region $M \subset \mathbb{R}^3$.

Then f extends to a potential u on M, where

$$\Delta u = 0, \quad u|_{\partial M} = f.$$

If γ is the conductivity on M, the current flux through ∂M is given by

$$(\gamma \nabla u) \cdot \nu = -\gamma \frac{\partial u}{\partial \nu}.$$
The Dirichlet-to-Neumann map

The map \(\Lambda_{\text{cl}} : C^\infty(\partial M) \to C^\infty(\partial M) \) defined by

\[
f \mapsto \frac{\partial u}{\partial \nu}
\]

is the classical *Dirichlet-to-Neumann map*.
The Dirichlet-to-Neumann map

The map $\Lambda_{\text{cl}} : C^\infty(\partial M) \to C^\infty(\partial M)$ defined by

$$f \mapsto \frac{\partial u}{\partial \nu}$$

is the classical Dirichlet-to-Neumann map.

Theorem (Lee-Uhlmann)

*If M^n is a compact, analytic Riemannian manifold with boundary, then M is determined up to isometry by Λ_{cl}.***
Joshi–Lionheart and Belishev–Sharafutdinov generalized the classical Dirichlet-to-Neumann map to differential forms:

\[\Lambda : \Omega^p(\partial M) \to \Omega^{n-p-1}(\partial M) \]
Joshi–Lionheart and Belishev–Sharafutdinov generalized the classical Dirichlet-to-Neumann map to differential forms:

\[\Lambda : \Omega^p(\partial M) \rightarrow \Omega^{n-p-1}(\partial M) \]

Theorem (Belishev–Sharafutdinov)

The data \((\partial M, \Lambda)\) completely determines the cohomology groups of \(M\).
Define the Hilbert transform $T := d\Lambda^{-1}$.

Theorem

If $\theta_1, \ldots, \theta_k$ are the Poincaré duality angles of M in dimension p, then the quantities $\left(-1\right)^{np + n + p} \cos^2 \theta_i$ are the non-zero eigenvalues of an appropriate restriction of T^2.

Define the *Hilbert transform* $T := d\Lambda^{-1}$.

Theorem

If $\theta_1, \ldots, \theta_k$ are the Poincaré duality angles of M in dimension p, then the quantities

$$(−1)^{np+n+p} \cos^2 \theta_i$$

are the non-zero eigenvalues of an appropriate restriction of T^2.
Belishev and Sharafutdinov posed the following question:

Can the multiplicative structure of cohomologies be recovered from our data \((\partial M, \Lambda)\)? Till now, the authors cannot answer the question.
Belishev and Sharafutdinov posed the following question:

Can the multiplicative structure of cohomologies be recovered from our data \((\partial M, \Lambda)\)? Till now, the authors cannot answer the question.

Theorem

The mixed cup product

\[
\cup : H^p(M; \mathbb{R}) \times H^q(M, \partial M; \mathbb{R}) \to H^{p+q}(M, \partial M; \mathbb{R})
\]

is completely determined by the data \((\partial M, \Lambda)\) when the relative class is restricted to come from the boundary subspace.
Some questions

- Poincaré duality angles for $G_4 \mathbb{R}^8 - \nu_r(G_3 \mathbb{R}^7)$? Other “Grassmann manifolds with boundary”?
Some questions

- Poincaré duality angles for $G_4\mathbb{R}^8 \setminus \nu_r(G_3\mathbb{R}_7)$? Other “Grassmann manifolds with boundary”?
- What is the limiting behavior of the Poincaré duality angles as the manifold “closes up”?
• Poincaré duality angles for $G_4\mathbb{R}^8 - \nu_r(G_3\mathbb{R}^7)$? Other “Grassmann manifolds with boundary”?
• What is the limiting behavior of the Poincaré duality angles as the manifold “closes up”?
• Can the full mixed cup product be recovered from $(\partial M, \Lambda)$? What about other cup products?
Some questions

- Poincaré duality angles for $G_4\mathbb{R}^8 - \nu_r(G_3\mathbb{R}^7)$? Other “Grassmann manifolds with boundary”?
- What is the limiting behavior of the Poincaré duality angles as the manifold “closes up”?
- Can the full mixed cup product be recovered from $(\partial M, \Lambda)$? What about other cup products?
- Can the L^2 inner product on $\mathcal{H}_N^p(M)$ and $\mathcal{H}_D^p(M)$ be recovered from $(\partial M, \Lambda)$?
Thanks!