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Polygons

Definition
A polygon given by vertices v1, . . . , vn is a collection of line
segments in the plane joining each vi to vi+1 (and vn to v1). The
edge vectors ~ei of the polygons are the differences between
vertices:

~ei = vi+1 − vi (and ~en = v1 − vn).
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Configuration Spaces

Definition
The space of possible shapes of a polygon (with a fixed number
of edges) is called a configuration space.

Theorem
If we fix the lengths of the edges in advance, the configuration
space of n-edge open polygons is the set of n − 1 turning
angles θ1, . . . , θn−1. This space is called an (n − 1)-torus.
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Closed Plane Polygons

Question
How can we describe closed plane polygons?

1 Use turning angles. (But what condition on turning angles
means the polygon closes?)

2 Use edge vectors. (What happens when you rotate the
polygon?)

3 Use complex numbers.
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Complex Numbers and the Square Root of a Polygon

Definition
An n-edge polygon could be given by a collection of edge
vectors ~e1, . . . , ~en of the polygon. The polygon closes ⇐⇒
~e1 + · · ·+ ~en = ~0.

Definition
A complex number z is written z = a + bi where i2 = −1. We
can also write z = reiθ = (r cos θ) + i(r sin θ).

Definition
We will describe an n-edge polygon by complex numbers
w1, . . .wn so that the edge vectors obey

~ek = w2
k

The complex n-vector (w1, . . . ,wn) ∈ Cn is the square root of
the polygon!



Complex Numbers and the Square Root of a Polygon

Definition
An n-edge polygon could be given by a collection of edge
vectors ~e1, . . . , ~en of the polygon. The polygon closes ⇐⇒
~e1 + · · ·+ ~en = ~0.

Definition
A complex number z is written z = a + bi where i2 = −1. We
can also write z = reiθ = (r cos θ) + i(r sin θ).

Definition
We will describe an n-edge polygon by complex numbers
w1, . . .wn so that the edge vectors obey

~ek = w2
k

The complex n-vector (w1, . . . ,wn) ∈ Cn is the square root of
the polygon!



Complex Numbers and the Square Root of a Polygon

Definition
An n-edge polygon could be given by a collection of edge
vectors ~e1, . . . , ~en of the polygon. The polygon closes ⇐⇒
~e1 + · · ·+ ~en = ~0.

Definition
A complex number z is written z = a + bi where i2 = −1. We
can also write z = reiθ = (r cos θ) + i(r sin θ).

Definition
We will describe an n-edge polygon by complex numbers
w1, . . .wn so that the edge vectors obey

~ek = w2
k

The complex n-vector (w1, . . . ,wn) ∈ Cn is the square root of
the polygon!



Complex Numbers and the Square Root of a Polygon

Definition
An n-edge polygon could be given by a collection of edge
vectors ~e1, . . . , ~en of the polygon. The polygon closes ⇐⇒
~e1 + · · ·+ ~en = ~0.

Definition
A complex number z is written z = a + bi where i2 = −1. We
can also write z = reiθ = (r cos θ) + i(r sin θ).

Definition
We will describe an n-edge polygon by complex numbers
w1, . . .wn so that the edge vectors obey

~ek = w2
k

The complex n-vector (w1, . . . ,wn) ∈ Cn is the square root of
the polygon!



Closure and The Square Root Description

Definition
If a polygon P is given by ~w = (w1, . . . ,wn) ∈ Cn, we can also
associate the polygon with two real n-vectors ~a = (a1, . . . ,an)

and ~b = (b1, . . . ,bn) where wk = ak + bk i .

~w =


w1
w2
...

wn

 =


a1 + b1i
a2 + b2i

...
an + bni

 =


a1
a2
...

an

+


b1
b2
...

bn

 i = ~a + ~bi



Closure and The Square Root Description

Definition
If a polygon P is given by ~w = (w1, . . . ,wn) ∈ Cn, we can also
associate the polygon with two real n-vectors ~a = (a1, . . . ,an)

and ~b = (b1, . . . ,bn) where wk = ak + bk i .

Proposition (Hausmann and Knutson, 1997)
The polygon P is closed ⇐⇒ the vectors ~a and ~b are
orthogonal and have the same length.

Proof.
We know w2

k = (ak + bk i) ∗ (ak + bk i) = (a2
k − b2

k ) + 2akbk i . So

0 =
∑

w2
k ⇐⇒

∑
(a2

k − b2
k ) = 0 and

∑
2akbk = 0

⇐⇒ ~a · ~a− ~b · ~b = 0 and 2~a · ~b = 0.
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Length and The Square Root Description

Definition
If a polygon P is given by ~w = (w1, . . . ,wn) ∈ Cn, we can also
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Proposition (Hausmann and Knutson, 1997)
The length of the polygon is given by the sum of the squares of
the norms of ~a and ~b.

Proof.
We know that the length of P is the sum

∑
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∑
|w2
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|w2
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∑
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|ak |2 + |bk |2

)
= |~a|2 + |~b|2.
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Putting it all together

Definition
The Stiefel manifold V2(Rn) is the space of pairs of vectors in
Rn which are unit length and perpendicular (a.k.a.,
orthonormal).
A sample element of V2(R3): 0.535398 −0.71878

0.678279 0.678818
0.503275 −0.150204


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Definition
The Stiefel manifold V2(Rn) is the space of pairs of vectors in
Rn which are unit length and perpendicular (a.k.a.,
orthonormal).

Theorem (Hausmann and Knutson, 1997)
The space of length-2 closed polygons in the plane up to
translation is double-covered by V2(Rn).

Conclusion
The right way to compare shapes that have a preferred
orientation (meaning you’re not allowed to rotate them) is by
computing distances in the Stiefel manifold.
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Rotation and the Square Root Description

Proposition (Hausmann and Knutson, 1997)
The rotation by angle φ of the polygon given by ~a, ~b has square
root description given by the vectors cos(φ/2)~a− sin(φ/2)~b
and sin(φ/2)~a + cos(φ/2)~b.

Proof.
We can write ~ek = w2

k = (rkeiθk )2 = r2
k ei2θk . If we rotate the

polygon by φ, we rotate each ~ek by φ and the new polygon is
given by

u2
k = r2

k ei(2θk+φ) = r2
k ei2(θk+

φ
2 )

So uk = rkei(θk+
φ
2 )

= rk cos(θk +
φ

2
) + rk sin(θk +

φ

2
)i

= (ak cos
φ

2
− bk sin

φ

2
) + (ak sin

φ

2
+ bk cos

φ

2
)i .
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Putting it all together II

Definition
The Grassmann manifold G2(Rn) is the space of
(2-dimensional) planes in Rn.

Theorem (Hausmann and Knutson, 1997)
The space of length-2 closed polygons in the plane up to
rotation and translation is double-covered by G2(Rn).

Conclusion
The right way to compare shapes is to compute distances in
the Grassmann manifold! This is a description of polygon
space that’s simple and easy to work with, and also won’t be
confused by simply rotating or translating the polygon.
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Jordan Angles and the Distance Between Planes

Question
How far apart are two planes in Rn?



Jordan Angles and the Distance Between Planes

Theorem (Jordan)
Any two planes in Rn have a pair of orthonormal bases ~v1, ~w1
and ~v2, ~w2 so that

1 ~v2 minimizes the angle between ~v1 and any vector on
plane P2. ~w2 minimizes the angle between the vector ~w1
perpendicular to ~v1 in P1 and any vector in P2.

2 (vice versa)
The angles between ~v1 and ~v2 and ~w1 and ~w2 are called the
Jordan angles between the two planes. The rotation carrying
~v1 → ~v2 and ~w1 → ~w2 is called the direct rotation from P1 to
P2 and it is the shortest path from P1 to P2 in the Grassmann
manifold G2(Rn).



Finding the Jordan Angles

Theorem (Jordan)

• Let Π1 be the map P1 → P1 given by orthogonal projection
P1 → P2 followed by orthogonal projection P2 → P1. The
basis ~v1, ~w1 is given by the eigenvectors of Π1.

• Let Π2 be the map P2 → P2 given by orthogonal projection
P2 → P1 followed by orthogonal projection P1 → P2. The
basis ~v2, ~w2 is given by the eigenvectors of Π2.

Conclusion
The bases ~v1, ~w1 and ~v2, ~w2 give the rotations of polygons P1
and P2 that are closest to one another in the Stiefel manifold
V2(Rn). This is how we should align polygons in the plane!



What about the square root of a space polygon?
Quaternions

Definition
The quaternions H are the skew-algebra over R defined by
adding i, j, and k so that

i2 = j2 = k2 = −1, ijk = −1

In other words, elements of H are of the form

q = a + bi + cj + dk.

We can think of the “square root” of a vector ~v ∈ R3 as the
quaternion q so that

~v = q̄iq.

Then we get a square root description of space polygons by
taking the “square root” of each edge in the polygon.
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Thank you!

Thank you for inviting me!


