
Symplectic Geometry and Frame Theory

CLAYTON SHONKWILER

(joint with Tom Needham)

Speaking loosely, a frame in a Hilbert space H is an overcomplete basis for H. The overcom-
pleteness of a frame allows for greater flexibility and greater robustness to data loss, both of which
are of substantial importance in a variety of applications [4, 7, 8].

More precisely, a frame in Cd is a collection F = {fj}Nj=1 of vectors fj ∈ Cd satisfying

a‖v‖2 ≤
N∑
j=1

| 〈v, fj〉 |2 ≤ b‖v‖2 ∀ v ∈ Cd

for some numbers 0 < a ≤ b called frame bounds. When a = b the frame is tight, and when
all the frame vectors have unit norm the frame is a unit norm frame. (Finite) unit norm tight
frames (FUNTFs) are particularly interesting, providing optimal reconstructions in the context of
measurements of equal power with additive white Gaussian noise [6]. Thinking of F as a d × n
matrix with ith column fi, the tight frame condition is equivalent to the frame operator FF ∗ being
a multiple of the d× d identity matrix Id, and the unit norm condition is equivalent to F ∗F having
1’s on the diagonal. Since trFF ∗ = trF ∗F , it follows that the FUNTFs are precisely those frames
for which

FF ∗ =
N

d
Id and

(
‖f1‖2, . . . , ‖fN‖2

)
= (1, . . . , 1). (1)

A natural and surprisingly challenging question to ask is whether the space of FUNTFs with fixed
d and N is connected; that the answer is “yes” is called the frame homotopy conjecture, posed by
Larson in a 2002 REU and first appearing in the literature in Dykema and Strawn’s 2006 paper [5].
This was recently proved by Cahill, Mixon, and Strawn [2].

Both of the conditions in (1) turn out to be natural to describe in the language of symplec-
tic geometry, leading to a simple alternative proof of the frame homotopy conjecture. Briefly,
a symplectic manifold is a pair (M,ω) where M is a smooth, even-dimensional manifold and
ω ∈ Ω2(M) is a closed, non-degenerate 2-form on M ; see [3] for a nice introduction to symplectic
geometry. For example, (R2n,

∑
dxi ∧ dyi) is the standard example of a symplectic manifold;

since Cd×N ' R2dN , the space of d×N complex matrices is also symplectic.

The action of a Lie group G on a symplectic manifold M is called Hamiltonian if there exists a
moment map µ : M → g∗ such that

ωp(XV , X) = Dpµ(X)(V ) (2)



2

for all p ∈ M , V ∈ g, and X ∈ TpM , where XV = d
dt

∣∣
t=0

exp(tV ) · p is the vector field on
M induced by the infinitesimal transformation V ∈ g. By work of Marsden–Weinstein [9] and
Meyer [10], the symplectic reduction

M �O(ξ) G := µ−1(O(ξ))/G

is naturally a symplectic manifold, where ξ ∈ g∗ and O(ξ) is its coadjoint orbit.

There is a natural action of U(d) × U(1)N on the space Cd×N of d × N complex matrices,
where U(d) acts by multiplication on the left and U(1)N acts by multiplication on the right by a
diagonal unitary matrix. In fact the scalar matrices in U(d) and U(1)N have the same effect, so
there is some redundancy in this action. Taking the quotient of U(1)N by the subgroup of scalar
matrices produces an effective action ofU(d)×U(1)N−1. Since u(d)∗ ' H(d), the d×dHermitian
matrices, and

(
u(1)N−1

)∗
= (u(1)∗)N−1 ' RN−1, the corresponding moment map is a map from

Cd×N toH(d)× RN−1 which turns out to be given by

µ : F 7→
(
FF ∗,

(
−1

2
‖f1‖2, . . . ,−

1

2
‖fN−1‖2

))
.

Therefore, the FUNTFs are simply the level set µ−1
(
N
d Id,

(
−1

2 , . . . ,−
1
2

))
and, while this space is

not itself symplectic, its quotient

Qd,N := µ−1
(
N

d
Id,

(
−1

2
, . . . ,−1

2

))
/(U(d)×U(1)N−1) = Cd×N�(

N
d
Id,−~12

)U(d)×U(1)N−1

is symplectic. Performing the reduction in stages yields

Qd,N '
(
Cd×N �N

d
Id
U(d)

)
�
−~1

2

U(1)N−1 ' Grd(Cn) �
−~1

2

U(1)N−1,

where Grd(Cn) is the Grassmannian of d-dimensional linear subspaces of Cn. But Grd(Cn) is
connected, and a theorem of Atiyah [1] implies that symplectic reductions of connected manifolds
by tori are connected, so Qd,N is connected. Since Qd,N is the quotient of the space of FUNTFs
by a connected group, this gives a simple symplectic proof of the frame homotopy conjecture:

Theorem 1 ([2, 11]). The space of length-N FUNTFs in Cd is path-connected for all N ≥ d ≥ 1.

This approach generalizes to spaces of frames with arbitrary prescribed frame operator and
arbitrary prescribed frame vector norms. Specifically, if S is a positive-definite Hermitian d × d
matrix and ~r = (r1, . . . , rN ) with ri > 0 for all i, let

Fd,NS (~r) = {F ∈ Cd×N |FF ∗ = S, ‖fi‖2 = ri}

be the space of frames with frame operator S and frame vector norms determined by ~r. Then a
suitable generalization of the above argument yields the following generalized frame homotopy
theorem:
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Theorem 2 ([11]). For any N ≥ d ≥ 1, any S, and any admissible ~r, Fd,NS (~r) is path-connected.

This only scratches the surface of a potentially fruitful connection between frame theory and
symplectic geometry: the symplectic machinery should naturally generalize to fusion frames and
seems well-adapted to other frame theory questions like the Paulsen problem, phase recovery, the
existence of maximal equiangular tight frames, and the problem of uniformly sampling random
FUNTFs.
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