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THE SYMPLECTIC GEOMETRY OF CLOSED EQUILATERAL
RANDOM WALKS IN 3-SPACE
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University of Georgia and Colorado State University

A closed equilateral random walk in 3-space is a selection of unit length
vectors giving the steps of the walk conditioned on the assumption that the
sum of the vectors is zero. The sample space of such walks with n edges is the
(2n − 3)-dimensional Riemannian manifold of equilateral closed polygons
in R

3. We study closed random walks using the symplectic geometry of the
(2n − 6)-dimensional quotient of the manifold of polygons by the action of
the rotation group SO(3).

The basic objects of study are the moment maps on equilateral random
polygon space given by the lengths of any (n − 3)-tuple of nonintersecting
diagonals. The Atiyah–Guillemin–Sternberg theorem shows that the image of
such a moment map is a convex polytope in (n−3)-dimensional space, while
the Duistermaat–Heckman theorem shows that the pushforward measure on
this polytope is Lebesgue measure on R

n−3. Together, these theorems allow
us to define a measure-preserving set of “action-angle” coordinates on the
space of closed equilateral polygons. The new coordinate system allows us
to make explicit computations of exact expectations for total curvature and
for some chord lengths of closed (and confined) equilateral random walks, to
give statistical criteria for sampling algorithms on the space of polygons and
to prove that the probability that a randomly chosen equilateral hexagon is
unknotted is at least 1

2 .
We then use our methods to construct a new Markov chain sampling al-

gorithm for equilateral closed polygons, with a simple modification to sam-
ple (rooted) confined equilateral closed polygons. We prove rigorously that
our algorithm converges geometrically to the standard measure on the space
of closed random walks, give a theory of error estimators for Markov chain
Monte Carlo integration using our method and analyze the performance of
our method. Our methods also apply to open random walks in certain types
of confinement, and in general to walks with arbitrary (fixed) edgelengths as
well as equilateral walks.

1. Introduction. In this paper, we consider the classical model of a random
walk in R

3—the walker chooses each step uniformly from the unit sphere. Some
of the first results in the theory of these random walks are based on the observation
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that if a point is distributed uniformly on the surface of a sphere in 3-space and we
write its position in terms of the cylindrical coordinates z and θ , then z and θ are in-
dependent, uniform random variates. This is usually called Archimedes’ theorem,
and it is the underlying idea in the work of Lord Rayleigh [61], Treloar [71] and
many others in the theory of random walks, starting at the beginning of the 20th
century. In particular, it means that the vector of z-coordinates of the edges (steps)
of a random walk is uniformly distributed on a hypercube and that the vector of
θ -coordinates of the edges is uniformly distributed on the n-torus.

When we condition the walk on closure, it seems that this pleasant structure
disappears: the individual steps in the walk are no longer independent random
variates, and there are no obvious uniformly distributed random angles or distances
in sight. This makes the study of closed random walks considerably more difficult
than the study of general random walks. The main point of this paper is that the
apparent disappearance of this structure in the case of closed random walks is only
an illusion. In fact, there is a very similar structure on the space of closed random
walks if we are willing to pay the modest price of identifying walks related by
translation and rigid rotation in R

3. This structure is less obvious, but just as useful.
As it turns out, Archimedes’ theorem was generalized in deep and interesting

ways in the later years of the 20th century, being revealed as a special case of
the Duistermaat–Heckman theorem [26] for toric symplectic manifolds. Further,
Kapovich and Millson [38] and Hausmann and Knutson [32] revealed a toric sym-
plectic structure on the quotient of the space of closed equilateral polygons by
the action of the Euclidean group E(3). Together, these theorems define a struc-
ture on closed random walk space which is remarkably similar to the structure on
the space of open random walks: if we view an n-edge closed equilateral walk
as the boundary of a triangulated surface, we will show below that the lengths of
the n − 3 diagonals of the triangulation are uniformly distributed on the polytope
given by the triangle inequalities and that the n − 3 dihedral angles at these diago-
nals of the triangulated surface are distributed uniformly and independently on the
(n − 3)-torus. This structure allows us to define a special set of “action-angle” co-
ordinates which provide a measure-preserving map from the product of a convex
polytope P ⊂ R

n−3 and the (n − 3)-torus (again, with their standard measures)
to a full-measure subset of the Riemannian manifold of closed polygons of fixed
edgelengths.

Understanding this picture allows us to make some new explicit calculations and
prove some new theorems about closed equilateral random walks. For instance, we
are able to find an exact formula for the total curvature of closed equilateral poly-
gons, to prove that the expected lengths of chords skipping various numbers of
edges are equal to the coordinates of the center of mass of a certain polytope, to
compute these moments explicitly for random walks with small numbers of edges
and to give a simple proof that at least 1/2 of equilateral hexagons are unknot-
ted. Further, we will be able to give a unified theory of several interesting prob-
lems about confined random walks, and to provide some explicit computations
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of chordlengths for confined walks. We state upfront that all the methods we use
from symplectic geometry are by now entirely standard; the new contribution of
our paper lies in the application of these powerful tools to geometric probability.

We will then turn to sampling for the second half of our paper. Our theory
immediately suggests a new Markov chain sampling algorithm for confined and
unconfined random walks. We will show that the theory of hit-and-run sampling
on convex polytopes immediately yields a sampling algorithm which converges
at a geometric rate to the usual probability measure on equilateral closed random
walks (or equilateral closed random walks in confinement). Geometric conver-
gence allows us to apply standard Markov Chain Monte Carlo theory to give er-
ror estimators for MCMC integration over the space of closed equilateral random
walks (either confined or unconfined). Our sampling algorithm works for any toric
symplectic manifold, so we state the results in general terms. We do this primarily
because various interesting confinement models for random walks have a natural
toric symplectic structure, though our results are presumably applicable far outside
the theory of random walks. As with the tools we use from symplectic geometry,
hit-and-run sampling and MCMC error estimators are entirely standard ways to in-
tegrate over convex polytopes. Again, our main contribution is to show that these
powerful tools apply to closed and confined random walks with fixed edgelengths
and to lay out some initial results which follow from their use.

2. Toric symplectic manifolds and action-angle coordinates. We begin
with a capsule summary of some relevant ideas from symplectic geometry. A sym-
plectic manifold M is a 2n-dimensional manifold with a special nondegenerate
2-form ω called the symplectic form. The volume form dm = 1

n!ω
n on M is called

the symplectic volume or Liouville volume and the corresponding measure is called
symplectic measure. A diffeomorphism of a symplectic manifold which preserves
the symplectic form is called a symplectomorphism; it must preserve symplectic
volume as well. A symmetry of the manifold is a 1-parameter group of symplec-
tomorphisms; differentiating at the identity yields a vector field on the manifold
giving the velocity of each point as the group starts to act. For example, rotating
the sphere around the z-axis gives a vector field of velocities tangent to the circles
of latitude.

We can use the 2-form to pair vector fields on M with 1-forms by contraction:
�v �→ ω(�v, ·). We call this operation j . If applying j to the velocity field of a sym-
metry yields an exact 1-form dμ, the action is called Hamiltonian. The primitive μ

of the 1-form is a function on M , which must be constant along any integral curve
of the velocity field by construction. This conserved quantity is called the moment
map of the action μ :M → R. If k such symmetries commute,3 they define an ac-
tion of the torus T k on M . In this case, the moment map yields a k-dimensional

3Symmetries which do not commute may be part of the action of a (noncommutative) Lie group
on M . The moment map has a different meaning in this case. We will return to this point later.
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vector of conserved quantities, so the moment map μ maps M to R
k (see [15],

Part VIII).
Two powerful theorems apply to the moment maps of Hamiltonian torus ac-

tions. The convexity theorem of Atiyah [3] and Guillemin–Sternberg [31] states
that the image of the moment map is a convex polytope P in R

k , which is called
the moment polytope. Further, the vertices of the moment polytope are the images
under the moment map of the fixed points of the torus action, allowing one to find
the moment polytope in practice. Next, if the action is effective, that is, noniden-
tity elements act nontrivially, the Duistermaat–Heckman theorem [26] asserts that
the pushforward of symplectic measure to the moment polytope P is a piecewise
polynomial multiple of Lebesgue measure. If k is half the dimension of M , that
is, k = n, the symplectic manifold is called a toric symplectic manifold and the
pushforward measure on P is a constant multiple of Lebesgue measure.

If we can invert the moment map, we can construct a map α :P ×T n → M com-
patible with μ which parametrizes a full-measure subset of the 2n-dimensional
manifold M by the n coordinates of points in P , which are called the “action”
variables, and the n angles in T n, which are called the corresponding “angle” vari-
ables. By convention, we call the action variables di and the angle variables θi . We
have the following.

THEOREM 1 (Duistermaat–Heckman [26], see Chapter 30 of [15]). Suppose
M is a 2n-dimensional toric symplectic manifold with moment polytope P , T n

is the n-torus (n copies of the circle) and α inverts the moment map. If we take
the standard measure on the n-torus and the uniform (or Lebesgue) measure on
int(P ), then the map α : int(P ) × T n → M parametrizing a full-measure subset of
M in action-angle coordinates is measure-preserving. In particular, if f :M → R

is any integrable function then∫
M

f (x)dm =
∫
P×T n

f (d1, . . . , dn, θ1, . . . , θn)dVolRn ∧ dθ1 ∧ · · · ∧ dθn(1)

and if f (d1, . . . , dn, θ1, . . . , θn) = fd(d1, . . . , dn)fθ (θ1, . . . , θn) then∫
M

f (x)dm =
∫
P

fd(d1, . . . , dn)dVolRn

∫
T n

fθ (θ1, . . . , θn)dθ1 ∧ · · · ∧ dθn.(2)

All this seems forbiddingly abstract, so we give a specific example which will
prove important below. The 2-sphere is a symplectic manifold where the symplec-
tic form ω is the ordinary area form, and the symplectic volume and the Rieman-
nian volume are the same. Any area-preserving map of the sphere to itself is a
symplectomorphism, but we are interested in the action of the circle on the sphere
given by rotation around the z-axis. This action is by area-preserving maps, and
hence by symplectomorphisms, and in fact it is Hamiltonian: the j map pairs the
velocity field with the differential of the function μ(x, y, z) = z, which is the mo-
ment map.
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We can see that the action preserves the fibers of μ, which are just horizontal
circles on the sphere. Since the dimension of the torus (1) is half the dimension
of the sphere (2), the sphere is then a toric symplectic manifold. The fixed points
of the torus action are the north and south poles. The images of these points under
the moment map are the values +1 and −1, so we expect the moment polytope to
be the convex hull of these points: the interval [−1,1]. This is indeed the image
of μ(x, y, z) = z. And, as the Duistermaat–Heckman theorem claims, the pushfor-
ward of Lebesgue measure on the sphere to this interval is a constant multiple of
the Lebesgue measure on the line. This, of course, is exactly Archimedes’ theorem,
but restated in a very sophisticated form.

In particular, it means that one can sample points on the sphere uniformly by
choosing their z and θ coordinates independently from uniform distributions on
the interval and the circle. The Duistermaat–Heckman theorem extends a similar
sampling strategy to any toric symplectic manifold. The best way to view this sam-
pling strategy, we think, is as a useful technique in the theory of intrinsic statistics
on Riemannian manifolds (cf. [58]) which applies to a special class of manifolds.
In principle, one can sample the entirety of any Riemannian manifold by choos-
ing charts for the manifold explicitly and then sampling appropriate measures on a
randomly chosen chart. Since the charts are maps from balls in Euclidean space to
the manifold, this reduces the problem to sampling a ball in R

n with an appropri-
ate measure. Of course, this point of view is so general as to be basically useless
in practice: you rarely have explicit charts for a nontrivial manifold, and the re-
sulting measures on Euclidean space could be very exotic and difficult to sample
accurately.

Action-angle coordinates, however, give a single “chart” with a simple measure
to sample: the product of Lebesgue measure on the convex moment polytope and
the uniform measure on the torus. There is a small price to pay here. We cannot
sample all of the toric symplectic manifold this way. The boundary of P corre-
sponds to a sort of skeleton inside the toric symplectic manifold M , and we cannot
sample this skeleton in any very simple way using action-angle coordinates. Of
course, if we are using the Riemannian (or symplectic) volume of M to define the
probability measure, this is a measure zero subset, so it is irrelevant to theorems
in probability. The benefit is that by deleting this skeleton, we remove most of
the topology of M , leaving us with the topologically very simple sample space
P × T n−3.

3. Toric symplectic structure on random walks or polygonal “arms.” We
now consider the classical space of random walks of fixed step length in R

3 and
show that the arguments underlying the historical application of Archimedes’ the-
orem (e.g., in Rayleigh [61]) can be viewed as arguments about action-angle coor-
dinates on this space as a toric symplectic manifold. We denote the space of open
“arm” polygons with n edges of lengths �r = (r1, . . . , rn) in R

3 by Arm3(n; �r).
In particular, the space of equilateral n-edge arms (with unit edges) is denoted
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Arm3(n; �1). If we consider polygons related by a translation to be equivalent, the
space Arm3(n; �r) is a product S2(r1) × · · · × S2(rn) of round 2-spheres with radii
given by the ri . The standard probability measure on this space is the product
measure on these spheres; this corresponds to choosing n independent points dis-
tributed according to the uniform measure on S2 to be the edge vectors of the
polygon.

PROPOSITION 2. The space of fixed edgelength open polygonal “arms”
Arm3(n; �r) is the product of n round spheres of radii �r = (r1, . . . , rn). This is a 2n-
dimensional toric symplectic manifold where the Hamiltonian torus action is given
by rotating each sphere about the z-axis, and the symplectic volume is the standard
measure. The moment map μ : Arm3(n; �r) → R

n is given by the z-coordinate of
each edge vector, and the image of this map (the moment polytope) is the hyperbox∏n

i=1[−ri, ri]. There is a measure-preserving map

α :
n∏

i=1

[−ri, ri] × T n → Arm3(n; �r)

given explicitly by �ei = (cos θi

√
1 − z2

i , sin θi

√
r2
i − z2

i , zi).

PROOF. As we mentioned above, the moment polytope is the convex hull of
the images of the fixed points of the Hamiltonian torus action. The only polyg-
onal arms fixed by the torus action are those where every edge is in the ±z-
direction, so the z-coordinates of the fixed points are indeed the vertices of the
hyperbox

∏n
i=1[−ri, ri] and the hyperbox itself is clearly their convex hull. The

z-coordinates z1, . . . , zn and rotation angles θ1, . . . , θn are the action-angle coor-
dinates on Arm3(n; �r) and the fact that α is measure-preserving is an immediate
consequence of Theorem 1. �

Since we can sample
∏n

i=1[−ri, ri] × T n directly, this gives a direct sampling
algorithm for (a full-measure subset of) Arm3(n; �r). Of course, direct sampling of
fixed-edgelength arms is straightforward even without symplectic geometry, but
this description of arm space has additional implications for confinement prob-
lems: if we can describe a confinement model by additional linear constraints on
the action variables, this automatically yields a toric symplectic structure on the
space of confined arms. We give examples in the next two sections, then in Sec-
tion 3.3 we use this machinery to provide a symplectic explanation for Rayleigh’s
formula for the probability density function (p.d.f.) of the distance between the
endpoints of a random equilateral arm.

3.1. Slab-confined arms. One system of linear constraints on the action vari-
ables of equilateral arms is the “slab” confinement model.
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DEFINITION 3. Given a polygon p in R
3 with vertices v1, . . . , vn, let

zWidth(p) be the maximum absolute value of the difference between z-coordinates
of any two vertices. We define the subspace SlabArm(n,h) ⊂ Arm3(n; �1) to be the
space of equilateral (open) space n-gons up to translation which obey the constraint
zWidth(p) ≤ h.

This is a slab constraint model where the endpoints of the walk are free (one
could also have a model where one or both endpoints are on the walls of the slab).
We now rephrase this slab constraint in action-angle variables.

PROPOSITION 4. A polygon p in Arm3(n; �1) given by (z1, . . . , zn, θ1, . . . , θn)

in action-angle coordinates lies in the space SlabArm(n,h) if and only if the vector
�z = (z1, . . . , zn) of action variables lies in the parallelotope P(n,h) given by the
collection of inequalities

−1 ≤ zi ≤ 1, −h ≤
j∑

k=i

zk ≤ h

for each 1 ≤ i ≤ j ≤ n. Hence, there is a measure-preserving map

α :P(n,h) × T n → SlabArm(n,h)

given by restricting the action-angle map of Proposition 2.

PROOF. This follows directly from Definition 3:
∑j

k=i zk is the difference
in z-height between vertex i and j so this family of linear constraints encodes
zWidth(p) ≤ h. The other constraints just restate the condition that �z lies in the
moment polytope [−1,1]n for Arm3(n; �1). �

COROLLARY 5. The probability that p ∈ Arm3(n; �1) lies in SlabArm(n,h) is
given by VolP(n,h)/2n.

This probability function should be useful in computing the entropic force ex-
erted by an ideal polymer on the walls of a confining slab. Figure 1 shows a col-
lection of these moment polytopes for different slab widths, and the corresponding
volumes.

3.2. Half-space confined arms. A similar problem is this: suppose we have a
freely jointed chain which is attached at one end to a plane (which we assume for
simplicity is the xy-plane), and must remain in the half-space on one side of the
plane. This models a polymer where one end of the molecule is bound to a surface
(at an unknown site). The moment polytope is

Hn = {�z ∈ [−1,1]n|z1 ≥ 0, z1 + z2 ≥ 0, . . . , z1 + · · · + zn ≥ 0,−1 ≤ zi ≤ 1
}

(3)

and the analogue of Proposition 4 holds in this case.
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FIG. 1. This figure shows the moment polytopes corresponding to 3-edge arms contained in slabs
of width h as subpolytopes of the cube with vertices (±1,±1,±1), which is the moment polytope for
unconfined arms. In this case, we can compute the volume of these moment polytopes directly using
polymake [28]. We conclude, for instance, that the probability that a random 3-edge arm is confined
in a slab of width 1

2 is 1
16 .

We can understand this condition on arms in terms of a standard random walk
problem: the zi are i.i.d. steps in a random walk, each selected from the uniform
distribution on [−1,1], and we are interested in conditioning on the event that
all the partial sums are in [0,∞). A good deal is known about this problem: for
instance, Caravenna gives an asymptotic p.d.f. for the end of a random walk con-
ditioned to stay positive, which is the height of the free end of the chain above
the plane [18]. If we could find an explicit form for this p.d.f., we could analyze
the stretching experiment where the free end of the polymer is raised to a known
height above the plane using magnetic or optical tweezers (cf. [68]).

We can directly compute the partition function for this problem; this is the vol-
ume of subpolytope (3) of the hypercube. This result is also stated in a paper of
Bernardi, Duplantier and Nadeau [7]. The proof is a pleasant combinatorial argu-
ment which is tangential to the rest of the paper, so we relegate it to Appendix B.

PROPOSITION 6. The volume of the polytope (3) is 1
2n

(2n
n

) = (2n−1)!!
n! .

3.3. Distribution of failure to close lengths. We now apply the action-angle
coordinates to give an alternate formula for the p.d.f. of end-to-end distance
in a random walk in R

3 with fixed step lengths and show that it is equivalent
to Rayleigh’s sinc integral formula [61]. This p.d.f. is key to determining the
Green’s function for closed polygons, which in turn is fundamental to the Moore–
Grosberg [53] and Diao–Ernst–Montemayor–Ziegler [23–25] sampling algorithms
and to expected total curvature calculations [17, 30]. For mathematicians, we note
that this p.d.f. is required in order to estimate the entropic elastic force exerted by
an ideal polymer whose ends are held at a fixed distance. Such experiments are
actually done in biophysics—Wuite et al. [75] (cf. [13]) made one of the first mea-
surements of the elasticity of DNA by stretching a strand of DNA between a bead
held in a micropipette and a bead held in an optical trap.

We first establish some lemmas.
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LEMMA 7. The p.d.f. of a sum of independent uniform random variates
in [−r1, r1] to [−rn, rn] is given by the pushforward of Lesbegue measure on∏n

i=1[−ri, ri] to [−∑
ri,

∑
ri] by the linear function

∑
xi . This p.d.f. is given

by

fn(x) = 1∏n
i=1 2ri

1√
n

SA(x, r1, . . . , rn),(4)

where SA(x, r1, . . . , rn) is the volume of the slice of the hypercube
∏n

i=1[−ri, ri]
by the plane

∑
xi = x. The function fn is everywhere n−2 times differentiable for

n > 2.

PROOF. It is standard that fn is a convolution of the n boxcar functions giving
the p.d.f.s of uniform random variates on the intervals [−r1, r1], . . . , [−rn, rn],
and hence that fn is n − 2 times differentiable. The set of points (x1, . . . , xn)

with
∑

xi = x is the slice of the hypercube with (n − 1)-dimensional volume
SA(x, r1, . . . , rn). This not quite the value of the p.d.f. fn(x), as we must correct
for the rate at which these slices sweep out n-dimensional volume using the coarea
formula and normalize the result by the volume of the hyperbox

∏n
i=1[−ri, ri]. �

We have the following.

PROPOSITION 8. The p.d.f. of the end-to-end distance � ∈ [0,
∑

ri] over the
space of polygonal arms Arm3(n; �r) is given by

φn(�) = �

2n−1R
√

n − 1

(
SA(� − rn, r1, . . . , rn−1) − SA(� + rn, r1, . . . , rn−1)

)
,

where R = ∏n
i=1 ri is the product of the edgelengths and SA(x, r1, . . . , rn−1) is the

volume of the slice of the hyperbox
∏n−1

i=1 [−ri, ri] by the plane
∑n−1

i=1 xi = x.

PROOF. From our moment polytope picture, we can see immediately that the
sum z of the z-coordinates of the edges of a random polygonal arm in Arm3(n; �r)
has the p.d.f. of a sum of uniform random variates in [−r1, r1] × · · · × [−rn, rn],
or fn(z) in the notation of Lemma 7. Since this is a projection of the spherically
symmetric distribution of end-to-end displacement in R

3 to the z-axis (R1), equa-
tion (29) of [43] applies,4 and tells us that the p.d.f. of � is given by

φn(�) = −2�f ′
n(�).

4Lord’s notation can be slightly confusing: in his formula for p3(r) in terms of p1(r), we have to

remember that p3(r) is not itself a p.d.f. on the line, it is a p.d.f. on R
3. It only becomes a p.d.f. on

the line when multiplied by the correction factor 4πr2 giving the area of the sphere at radius r in R
3.
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To differentiate fn(�), we use the following observation (cf. Buonacore [12]):

fn(x) =
∫ rn

−rn

fn−1(x − y)
1

2rn
dy = Fn−1(x + rn) − Fn−1(x − rn)

2rn
,(5)

where Fn−1(x) is the c.d.f. of a sum of uniform random variates in [−r1, r1], . . . ,
[−rn−1, rn−1]. Differentiating and substituting in the results of Lemma 7 yields
the formula above. �

Since we will often be interested in equilateral polygons with edgelength 1, we
observe the following.

COROLLARY 9. The p.d.f. of the end-to-end distance � ∈ [0, n] over the space
of equilateral arms Arm3(n; �1) is given by

φn(�) = �

2n−1
√

n − 1

(
SA

(
� − 1, [−1,1]n−1) − SA

(
� + 1, [−1,1]n−1))

,(6)

where SA(x, [−1,1]n−1) is the volume of the slice of the standard hypercube
[−1,1]n−1 by the plane

∑n−1
i=1 xi = x.

The reader who is familiar with the theory of random walks may find the above
corollary rather curious. As mentioned above, the standard formula for this p.d.f.
as an integral of sinc functions was given by Rayleigh in 1919 and it looks noth-
ing like (6). The derivation given by Rayleigh of the sinc integral formula has no
obvious connection to polyhedral volumes, but in fact by the time of Rayleigh’s
paper a connection between polyhedra and sinc integrals had already been given
by George Pólya in his thesis [59, 60] in 1912. This formula has been rediscovered
many times [10, 49]. First, we state the Rayleigh formula [24, 61] in our notation:

φn(�) = 2�

π

∫ ∞
0

y sin�y sincn y dy,(7)

where sincx = sinx/x as usual. Now Pólya showed that the volume of the central
slab of the hypercube [−1,1]n−1 given by −a0 ≤ ∑

xi ≤ a0 is given by

Vol(a0) = 2na0

π

∫ ∞
0

sinca0y sincn−1 y dy.(8)

Our SA(x, [−1,1]n−1) is the (n − 1)-dimensional volume of a face of this slab;
since it is this face (and its symmetric copy) which sweep out n-dimensional vol-
ume as a0 increases, we can deduce that

SA
(
x, [−1,1]n−1) =

√
n − 1

2
Vol′(x),
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and we can obtain a formula for SA(x, [−1,1]n−1) by differentiating (8). After
some simplifications, we get

SA
(
x, [−1,1]n−1) = 2n−1

√
n − 1

π

∫ ∞
0

cos(xy) sincn−1 y dy.

Using the angle addition formula for cos(a + b), this implies that

SA
(
� − 1, [−1,1]n−1) − SA

(
� + 1, [−1,1]n−1)

= 2n−1
√

n − 1

π

∫ ∞
0

2 siny sin�y sincn−1 y dy

= 2n
√

n − 1

π

∫ ∞
0

y sin�y sincn y dy.

Multiplying by �

2n−1
√

n−1
shows that (6) and (7) are equivalent formulas for the

p.d.f. φn.
Given (6) and (7), the p.d.f. of the failure-to-close vector �� = ∑ �ei with length

|��| = � can be written in the following forms:

�n(��) = 1

4π�2 φn(�)

= 1

2n+1π�
√

n − 1

(
SA

(
� − 1, [−1,1]n−1) − SA

(
� + 1, [−1,1]n−1))

(9)

= 1

2π2�

∫ ∞
0

y sin�y sincn y dy.

The latter formula for the p.d.f. appears in Grosberg and Moore [53] as equa-
tion (B5). Since Grosberg and Moore then actually evaluate the integral for the
p.d.f. as a finite sum, one immediately suspects that there is a similar sum form
for the slice volume terms in (6). In fact, we have several options to choose from,
including using Pólya’s finite sum form to express (8) and then differentiating the
sum formula with respect to the width of the slab. We instead rely on the following
theorem, which we have translated to the current situation.

THEOREM 10 (Marichal and Mossinghoff [49]). Suppose that �w ∈ R
n has

all nonzero components and suppose x is any real number. Then the (n − 1)-
dimensional volume of the intersection of the hyperplane 〈�x, �w〉 = x with the hy-
percube [−1,1]n is given by

Vol = | �w|2
(n − 1)!∏wi

∑
A⊂{1,...,n}

(−1)|A|
(
x + ∑

i /∈A

wi − ∑
i∈A

wi

)n−1

+
,(10)

where | �w|2 is the usual (L2) norm of the vector �w, z+ = max(z,0) and we use the
convention 00 = 0 when considering the n = 1 case.
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For our SA(x, [−1,1]n−1) function, the vector �w consists of all 1’s. Using the
fact that the number of subsets of {1, . . . , n} with cardinality k is

(n
k

)
, we can prove

the following proposition.

PROPOSITION 11. The (n − 2)-dimensional volume SA(x, [−1,1]n−1) is
given by

SA
(
x, [−1,1]n−1) =

√
n − 1

(n − 2)!
n−1∑
k=0

(−1)k
(

n − 1
k

)
(x + n − 1 − 2k)n−2+ .(11)

We can combine this with (9) to obtain the explicit piecewise polynomial p.d.f.
for the failure-to-close vector (for n ≥ 2):

�n(��) = n − 1

2n+1π�
(12)

×
n−1∑
k=0

(−1)k

k!(n − k − 1)!
(
(n + � − 2k − 2)n−2+ − (n + � − 2k)n−2+

)
.

When n = 2, recall that we use the convention 00 = 0. When n = 1 the formula
does not make sense, but we can easily compute �1(��) = 1

4π
δ(1 − �). This for-

mula for �n(�) is known classically, and given as (2.181) in Hughes [36]. The
polynomials are precisely those given in (B13) of Moore and Grosberg [53].

3.4. The expected total curvature of equilateral polygons. In Section 5.4, it
will be useful to know exact values of the expected total curvature of equilateral
polygons. Let Pol3(n; �1) ⊂ Arm3(n; �1) be the subspace of closed equilateral n-
gons. Following the approach of [17, 30], we can use the p.d.f. above to find an
integral formula for the expected total curvature of an element of Pol3(n; �1):

THEOREM 12. The expected total curvature of an equilateral n-gon is

E
(
κ;Pol3(n; �1)

) = n

2Cn

∫ 2

0
arccos

(
�2 − 2

2

)
�n−2(�)�d�,(13)

where Cn and �n−2(�) are given explicitly in (15) and (12), respectively, and Ta-
ble 2 shows exact values of the integral for small n.

This integral can be evaluated easily by computer algebra since �n−2(�) is

piecewise polynomial in � and since
∫ 2

0 arccos(�2−2
2 )�k d� = 22k+1nB(k/2+1,k/2)

(k+1)2 ,
where B is the Euler beta function. Of course, it would be very interesting to find
a closed form.
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PROOF OF THEOREM 12. The total curvature of a polygon is just the sum of
the turning angles, so the expected total curvature of an n-gon is simply n times
the expected value of the turning angle θ(�ei, �ei+1) between any pair (�ei, �ei+1) of
consecutive edges. In other words,

E
(
κ;Pol3(n; �1)

) = nE
(
θ;Pol3(n; �1)

)
(14)

= n

∫
θ(�ei, �ei+1)P (�ei, �ei+1)dVol�ei

dVol�ei+1,

where P(�ei, �ei+1)dVol�ei
dVol�ei+1 is the joint distribution of the pair of edges.

The edges �ei, �ei+1 are chosen uniformly from the unit sphere subject to the
constraint that the remaining n − 2 edges must connect the head of �ei+1 to the tail
of �ei . In other words,

P(�ei, �ei+1)dVol�ei
dVol�ei+1

= 1

Cn

�1(�ei)�1(�ei+1)�n−2(−�ei − �ei+1)dVol�ei
dVol�ei+1,

where

Cn = �n(�0) = 1

2n+1π(n − 3)!
�n/2�∑
k=0

(−1)k+1
(

n

k

)
(n − 2k)n−3(15)

is the normalized (2n − 3)-dimensional Hausdorff measure of the submanifold of
closed n-gons. Notice that �1(�v) = δ(|�v|−1)

4π
is the distribution of a point chosen

uniformly on the unit sphere. In particular, we can rewrite the integral (14) as

E
(
κ;Pol3(n; �1)

)
= n

Cn

∫
�ei∈S2

∫
�ei+1∈S2

θ(�ei, �ei+1)
1

16π2 �n−2(−�ei − �ei+1)dVolS2 dVolS2 .

Moreover, at the cost of a constant factor 4π we can integrate out the �ei coordinate
and assume �ei points in the direction of the north pole. Similarly, at the cost of
an additional 2π factor we can integrate out the azimuth angle of �ei+1 and reduce
the above integral to a single integral over the polar angle of �ei+1, which is now
exactly the angle θ(�ei, �ei+1):

E
(
κ;Pol3(n; �1)

) = n

2Cn

∫ π

0
θ�n−2(

√
2 − 2 cos θ) sin θ dθ

since
√

2 − 2 cos θ is the length of the vector �� = −�ei − �ei+1. Changing coordi-
nates to integrate with respect to � = |��| ∈ [0,2] completes the proof. �
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FIG. 2. The fan triangulation of the regular planar 7-gon.

4. The (almost) toric symplectic structure on closed polygons. We are now
ready to describe explicitly the toric symplectic structure on closed polygons of
fixed edgelengths. We first need to fix a bit of notation. The space Pol3(n; �r) of
closed polygons of fixed edgelengths �r = (r1, . . . , rn), where polygons related by
translation are considered equivalent, is a subspace of the Riemannian manifold
Arm3(n; �r) (with the product metric on spheres of varying radii). It has a corre-
sponding subspace metric and measure, which we refer to as the standard measure
on Pol3(n; �r). There is a measure-preserving action of SO(3) on Pol3(n; �r), and a
corresponding quotient space P̂ol3(n; �r) = Pol3(n; �r)/SO(3). This quotient space
inherits a pushforward measure from the standard measure on Pol3(n; �r), and we
call this the standard measure on P̂ol3(n; �r), which we will shortly see (almost)
has a toric symplectic structure.

We can triangulate a convex n-gon by joining vertices v3, . . . , vn−1 to v1 with
n − 3 chords to create n − 2 triangles. This triangulation, which we call the “fan
triangulation,” is shown in Figure 2. There are many other ways to triangulate
the polygon, but—as can be proved inductively—each consists of n − 2 triangles
formed by n − 3 chords.

We call these n − 3 chords the diagonals of the triangulation T . Since the side
lengths of any triangle obey 3 triangle inequalities, the edgelengths and diagonal
lengths of T must obey a set of 3(n−2) triangle inequalities, which we call the tri-
angulation inequalities. For the fan triangulation, let r1, . . . , rn be the edgelengths
of an n-gon and let d1, . . . , dn−3 be the lengths of the diagonals. In this triangula-
tion, di = |vi+2 − v1|. The first and last triangles are made up of two sides and one
diagonal: r1, r2, and d1, or rn−1, rn and dn−3. So these variables must satisfy the
triangle inequalities

d1 ≤ r1 + r2,

r1 ≤ d1 + r2,

r2 ≤ r1 + d1,

and

dn−3 ≤ rn−1 + rn,

rn−1 ≤ dn−3 + rn,

rn ≤ rn−1 + dn−3.

(16)

All other triangles are made up of two diagonals and one side: the triangle
�v1vi+2vi+3 has side lengths di , ri+2, and di+1. These variables must satisfy the
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FIG. 3. In a bending flow or polygonal fold, we use two vertices of the polygon to define an axis of
rotation and rotate one arc of the polygon (shown at left) around this axis while the complementary
arc of the polygon (shown at right) stays fixed. All edgelengths are fixed by this transformation and
the polygon stays closed.

triangle inequalities

ri+1 ≤ di + di+1, di ≤ ri+2 + di+1, di+1 ≤ ri+2 + di.(17)

Finally, given a diagonal (chord) of a space polygon, we can perform what the
random polygons community calls a polygonal fold or crankshaft move [1] and the
symplectic geometry community calls a bending flow [38] by rotating one arc of
the polygon rigidly with respect to the complementary arc, with axis of rotation
the diagonal, as shown in Figure 3; the collection of such rotations around all of
the n − 3 diagonals of a given triangulation will be our Hamiltonian torus action.

We can now summarize the existing literature as follows.

THEOREM 13 (Kapovich and Millson [38], Howard, Manon and Millson [35],
Hitchin [34]). The following facts are known:

• P̂ol3(n; �r) is a possibly singular (2n−6)-dimensional symplectic manifold. The
symplectic volume is equal to the standard measure.

• To any triangulation T of the standard n-gon we can associate a Hamiltonian
action of the torus T n−3 on P̂ol3(n; �r), where the angle θi acts by folding the
polygon around the ith diagonal of the triangulation.

• The moment map μ : P̂ol3(n; �r) → R
n−3 for a triangulation T records the

lengths di of the n − 3 diagonals of the triangulation.
• The moment polytope P is defined by the triangulation inequalities for T .
• The action-angle map α for a triangulation T is given by constructing the trian-

gles using the diagonal and edgelength data to recover their side lengths, and
assembling them in space with (oriented) dihedral angles given by the θi , as
shown in Figure 4.

• The inverse image μ−1(interiorP) ⊂ P̂ol3(n; �r) of the interior of the moment
polytope P is an (open) toric symplectic manifold.

Here is a very brief summary of how these results work. Just as for Hamilto-
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FIG. 4. This figure shows how to construct an equilateral pentagon in P̂ol(5; �1) using the ac-
tion-angle map. First, we pick a point in the moment polytope shown in Figure 5 at center. We have
now specified diagonals d1 and d2 of the pentagon, so we may build the three triangles in the tri-
angulation from their side lengths, as in the picture at left. We then choose dihedral angles θ1 and
θ2 independently and uniformly, and join the triangles along the diagonals d1 and d2, as in the
middle picture. The right-hand picture shows the final space polygon, which is the boundary of this
triangulated surface.

nian torus actions, in general there is a moment map associated to every Hamil-
tonian Lie group action on a symplectic manifold. In particular, Kapovich and
Millson [38] pointed out that the symplectic manifold Arm3(n; �r) admits a Hamil-

FIG. 5. This figure shows the fan triangulation of a 7-gon on the left and the corresponding mo-
ment polytopes for equilateral space pentagons and equilateral space hexagons. For the pentagon
moment polytope, we show the square with corners at (0,0) and (2,2) to help locate the figure, while
for the hexagon moment polytope, we show the box with corners at (0,0,0) and (2,3,2) to help un-
derstand the geometry of the figure. The vertices of the polytopes correspond to polygons fixed by the
torus action given by rotating around the diagonals. The polygons on the boundary of the moment
polytope all degenerate in some way, as at least one triangle inequality is extremized; the vertices
of the moment polytope represent especially degenerate polygons which extremize several triangle
inequalities at once. For instance, the (2,2) point in the pentagon’s moment polytope corresponds to
the configuration given by an isoceles triangle with sides 2, 2, and 1 (two triangles have collapsed to
line segments). The diagonals lie along the long sides; rotating around them is a rotation of the entire
configuration in space, and is hence trivial because we are considering equivalence classes up to the
action of SO(3). The (2,3,2) point in the hexagon’s moment polytope corresponds to a completely
flat (or “lined”) configuration double-covering a line segment of length 3. Here, all the diagonals lie
along the same line and rotation around the diagonals does nothing.
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tonian action by the Lie group SO(3) given by rotating the polygonal arm in space
[this is the diagonal SO(3) action on the product of spheres]. In this case, there
are three circle actions given by rotating around the x-, y- and z-axes, each of
which defines a conserved quantity. But these circle actions do not commute: the
three quantities conserved under each rotation are the coordinate functions of a
map μ : Arm3(n; �r) → R

3 which is equivariant under the SO(3) action but not
invariant. In fact, adapting the computation we did above in our symplectic ex-
planation of Archimedes’ theorem, we can see that μ is the displacement vector
joining the ends of the polygon.

The closed polygons Pol3(n; �r) are the fiber μ−1(�0) of this map. This fiber of μ

is preserved by the SO(3) action. In this situation, we can perform what is known
as a symplectic reduction (or Marsden–Weinstein–Meyer reduction [50, 51], see
Part IX of [15]) to produce a symplectic structure on the quotient of the fiber
μ−1(�0) by the group action. This yields a symplectic structure on the (2n − 6)-di-
mensional moduli space P̂ol3(n; �r). The symplectic measure induced by this sym-
plectic structure is equal to the standard measure given by pushing forward the
Hausdorff measure on Pol3(n; �r) to P̂ol3(n; �r) because the “parent” symplectic
manifold Arm3(n; �r) is a Kähler manifold [34].

The polygon space P̂ol3(n; �r) is singular if

εI (�r) := ∑
i∈I

ri − ∑
j /∈I

rj

is zero for some I ⊂ {1, . . . , n}. Geometrically, this means it is possible to con-
struct a degenerate polygon which lies on a line with edgelengths given by �r . Since
these polygons are fixed by rotations around the line on which they lie, the action of
SO(3) is not free in this case and the symplectic reduction develops singularities.
Nonetheless, the reduction P̂ol3(n; �r) is a complex analytic space with isolated
singularities; in particular, the complement of the singularities is a symplectic (in
fact Kähler) manifold to which Theorem 13 applies.

Both the volume and the cohomology ring of P̂ol3(n; �r) are well understood
from this symplectic perspective [11, 33, 37, 39, 40, 47, 69]. For example, we
have the following.

PROPOSITION 14 (Takakura [69], Khoi [39], Mandini [47]). The volume of
P̂ol3(n; �r) is

Vol
(
P̂ol3(n; �r)) = − (2π)n−3

2(n − 3)!
∑
I

(−1)n−|I |εI (�r)n−3,

where the sum is over all I ⊂ {1, . . . , n} such that εI (�r) > 0.

COROLLARY 15. The volume of the space of equilateral n-gons is

Vol
(
P̂ol3(n; �1)

) = − (2π)n−3

2(n − 3)!
�n/2�∑
k=0

(−1)k
(

n

k

)
(n − 2k)n−3.
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4.1. The knotting probability for equilateral hexagons. We immediately give
an example application of this picture. In [17], we showed using the Fáry–Milnor
theorem that at least 1

3 of hexagons of total length 2 are unknotted by showing that
their total curvature was too small to form a knot. We could repeat the calculation
using our explicit formula for the expectation of the total curvature for equilateral
hexagons above, but the results would be disappointing; only about 27% of the
space is revealed to be unknotted by this method. On the other hand action-angle
coordinates, coupled with results of Calvo, immediately yield a better bound.

PROPOSITION 16. At least 1
2 of the space P̂ol3(6; �1) of equilateral hexagons

consists of unknots.

PROOF. There are several triangulations of the hexagon, but only two have
a central triangle surrounded by 3 others: the triangulations T135 given by joining
vertices 1–3–5 and T246 given by joining vertices 2–4–6. Each has a corresponding
set of action-angle coordinates α :P × T 3 → P̂ol3(6; �1). In [14], an impressively
detailed analysis of hexagon space, Jorge Calvo defines a geometric5 invariant of
hexagons called the curl which is 0 for unknots and ±1 for trefoils. In the proof of
his Lemma 16, Calvo observes that any knotted equilateral hexagon with curl +1
has all three dihedral angles between 0 and π in either T135 or T246.

The rest of the proof is elementary, but we give all the steps here as this is the
first of many such arguments below. Formally, the knot probability is the expected
value of the characteristic function

χknot(p) =
{ 1, if p is knotted,

0, if p is unknotted.

By Calvo’s work, χknot is bounded above by the sum χcurl=+1 + χcurl=−1 and
χcurl=+1 is bounded above by the sum of the characteristic functions

χT (d1, d2, d3, θ1, θ2, θ3) =
{

1, if θi ∈ [0, π] for i ∈ {1,2,3},
0, otherwise,

where T is either T135 or T246. Now Theorem 13 tells us that almost all of
P̂ol3(6; �1) is a toric symplectic manifold, so (2) of Theorem 1 holds for integrals
over this polygon space. In particular, χT does not depend on the di , so its ex-
pected value over P̂ol3(6; �1) is equal to its expected value over the torus T 3 of θi .
This expected value is clearly 1

8 . Summing over both triangulations and making a
similar argument for χcurl=−1, we see the knot probability is no more than 1

2 , as
desired. �

5Interestingly, curl is independent from the topological invariant given by the handedness of the
trefoil, so there are at least four different types of equilateral hexagonal trefoils. Calvo proves that
curl and handedness together form a complete set of invariants for equilateral hexagonal trefoils; that
is, there are only four types.
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Of course, this bound is still a substantial underestimate of the fraction
of unknots. Over a 12-hour run of the “PTSMCMC” Markov chain sam-
pler of Section 5.5, we examined 1,318,001 equilateral hexagons and found
173 knots. Using the 95% confidence level Geyer IPS error estimators of Sec-
tion 5.3, we estimate the knot probability for unconfined equilateral hexagons is
1.3 × 10−4 ± 0.2 × 10−4, or between 1.1 and 1.5 in 10,000.

4.2. The fan triangulation and chordlengths. As we noted above, the “fan”
triangulation of a polygon is created by joining vertex v1 to vertices v3, . . . , vn−1.
Recall that as shown in Figure 5, we number the diagonals d1, . . . , dn−3 so that the
first triangle has edgelengths d1, r1, r2, the last triangle has edgelengths dn−3, rn−1,
rn, and all the triangles in between have edgelengths in the form di , di+1, ri+2.
The corresponding triangulation inequalities, which we call the “fan triangulation
inequalities” are then

|r1 − r2| ≤ d1 ≤ r1 + r2, ri+2 ≤ di + di+1,
(18)

|di − di+1| ≤ ri+2, |rn − rn−1| ≤ dn−3 ≤ rn + rn−1.

DEFINITION 17. The fan triangulation polytope Pn(�r) ⊂ R
n−3 is the moment

polytope for P̂ol3(n; �r) corresponding to the fan triangulation and is determined by
the fan triangulation inequalities (18). The fan triangulation polytopes P5(�1) and
P6(�1) are shown in Figure 5.

This description of the moment polytope follows directly from Theorem 13.
Applying Theorem 1 to this situation gives necessary and sufficient conditions

for uniform sampling on P̂ol3(n; �r). These could be used to test proposed poly-
gon sampling algorithms given statistical tests for uniformity on convex subsets of
Euclidean space and on the (n − 3)-torus.

PROPOSITION 18. A polygon in P̂ol3(n; �r) is sampled according to the stan-
dard measure if and only if its diagonal lengths d1 = |v1 − v3|, d2 = |v1 − v4|,
. . . , dn−3 = |v1 − vn−1| are uniformly sampled from the fan polytope Pn(�r) and its
dihedral angles around these diagonals are sampled independently and uniformly
in [0,2π).

The fan triangulation polytope also gives us a natural way to understand the
probability distribution of chord lengths of a closed random walk. To fix notation,
we make the following definition.

DEFINITION 19. Let ChordLength(k, n; �r) be the length |v1 − vk+1| of the
chord skipping the first k edges in a polygon sampled according to the standard
measure on P̂ol3(n; �r). This is a random variable.
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The expected values of squared chordlengths for equilateral polygons have been
computed by a rearrangement technique, and turn out to be quite simple.

PROPOSITION 20 (Cantarella, Deguchi, Shonkwiler [16] and Millett, Zir-
bel [76]). The second moment of the random variable ChordLength(k, n; �1) is
k(n−k)
n−1 .

It is obviously interesting to know the other moments of these random variables,
but this problem seems considerably harder. In particular, the techniques used in
the proofs of Proposition 20 do not apply to other moments of chordlength. Here
is an alternate form for the chordlength problem which allows us to make some
explicit calculations.

THEOREM 21. The expectation of the random variable ChordLength(k, n; �1)

is the coordinate dk−1 of the center of mass of the fan triangulation polytope Pn(�1).
For n between 4 and 8, these expectations are given by the fractions

n \ k 2 3 4 5 6

4 1
5 17/15 17/15
6 14/12 15/12 14/12
7 461/385 506/385 506/385 461/385
8 1168/960 1307/960 1344/960 1307/960 1168/960

(19)

The pth moment of ChordLength(k, n; �1) is coordinate dk−1 of the pth center of
mass of the fan triangulation polytope Pn(�1).

PROOF. Since the measure on P̂ol3(n; �1) is invariant under permutations of
the edges, the p.d.f. of chord length for any chord skipping k edges must be the
same as the p.d.f. for the length of the chord joining v1 and vk+1. But this chord is
a diagonal of the fan triangulation, so its length is the coordinate dk−1 of the fan
triangulation polytope Pn(�1). Since these chord lengths do not depend on dihe-
dral angles, their expectations over polygon space are equal to their expectations
over Pn(�1) by (2) of Theorem 1, which applies by Theorem 13. But the expecta-
tion of the pth power of a coordinate over a region is simply a coordinate of the
corresponding pth center of mass. We obtained the results in the table by a direct
computer calculation using polymake [28], which decomposes the polytopes into
simplices and computes the center of mass as a weighted sum of simplex centers
of mass. �

It would be very interesting to get a general formula for these polytope centers
of mass.
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4.3. Closed polygons in (rooted) spherical confinement. Following the termi-
nology of Diao et al. [23], we say that a polygon p is in rooted spherical con-
finement of radius R if every vertex of the polygon is contained in a sphere of
radius R centered at the first vertex of the polygon. As a subspace of the space
of closed polygons of fixed edgelengths, the space of confined closed polygons
inherits a toric symplectic structure. In fact, the moment polytope for this structure
is a very simple subpolytope of the fan triangulation polytope.

DEFINITION 22. The confined fan polytope Pn,R(�r) ⊂ Pn(�r) is determined by
the fan triangulation inequalities (18) and the additional linear inequalities di ≤ R.

As before, we immediately have action-angle coordinates Pn,R(�r) × T n−3 on
the space of rooted confined polygons. We note that the vertices of the confined
fan triangulation polytope corresponding to a space of confined polygons are not
all fixed points of the torus action since this is not the entire moment polytope; new
vertices have been added by imposing the additional linear inequalities. As before,
we get criteria for sampling confined polygons (directly analogous to Proposi-
tion 18 for unconfined polygons).

PROPOSITION 23. A polygon in P̂ol3(n; �r) is sampled according to the stan-
dard measure on polygons in rooted spherical confinement of radius R if and only
if its diagonal lengths d1 = |v1 − v3|, d2 = |v1 − v4|, . . . , dn−3 = |v1 − vn−1| are
uniformly sampled from the confined fan polytope Pn,R(�r) and its dihedral angles
around these diagonals are sampled independently and uniformly in [0,2π).

We can also compute expected values for chordlengths for confined polygons
following the lead of Theorem 21, but here our results are weaker because the p.d.f.
of chordlength is no longer simply a function of the number of edges skipped.

THEOREM 24. The expected length of the chord joining vertex v1 to vertex
vk+1 in a polygon sampled according to the standard measure on polygons in
rooted spherical confinement of radius R is given by coordinate dk−1 of the center
of mass of the confined fan triangulation polytope Pn,R(�r). For n between 4 and
10, �r = �1, and R = 3/2, these expectations are

n \ k 2 3 4 5 6 7 8 (denominator)

4 3/4
5 8/9 8/9
6 293/336 316/336 293/336
7 281/320 298/320 298/320 281/320
8 23,237 24,752 24,402 24,752 23,237 26,496
9 46,723 49,718 49,225 49,225 49,718 46,723 53,256

10 1,145,123 1,218,844 1,205,645 1,210,696 1,205,645 1,218,844 1,145,123 1,305,344

where for n = 8, 9, and 10 we moved the common denominator of all fractions in
the row to the right-hand column.



570 J. CANTARELLA AND C. SHONKWILER

FIG. 6. Each line in this graph shows the expected length of the chord joining vertices v1 and vk

in a random equilateral 10-gon. The 10-gons are sampled from the standard measure on polygons in
rooted spherical confinement. From bottom to top, the confinement radii are 1.25, 1.5, 1.75, 2, 2.5, 3,
4 and 5. Polygons confined in a sphere of radius 5 are unconfined. Note the small parity effects which
emerge in tighter confinement. These are exact expectations, not the result of sampling experiments.

The proof is just the same as the proof of Theorem 21, and again we use poly-
make for the computations. The data show an interesting pattern: for 8, 9 and 10
edge polygons, the confinement is tight enough that the data reveals small par-
ity effects in the expectations. For 10-gons, for instance, vertex v5 is on average
closer to vertex v1 than vertex v4 is. We also calculated the exact expectation of
chordlength for equilateral 10-gons confined to spheres of other radii. The results
are shown in Figure 6.

5. Markov chain Monte Carlo for closed and confined random walks. We
have now constructed the action-angle coordinates on several spaces of random
walks, including closed walks, closed walks in rooted spherical confinement, stan-
dard (open) random walks and open random walks confined to half-spaces or slabs.
In each case, the action-angle coordinates have allowed us to prove some theorems
and make some interesting exact computations of probabilities on the spaces. To
address more complicated (and physically interesting) questions, we will now turn
to numerically sampling these spaces.

Numerical sampling of closed polygons underlies a substantial body of work on
the geometry and topology of polymers and biopolymers (see the surveys of [57]
and [6], which contain more than 200 references), which is a topic of interest in
statistical physics. Many of the physics questions at issue in these investigations
seem to be best addressed by computation. For instance, while our methods above
gave us simple (though not very tight) theoretical bounds on the fraction of un-
knots among equilateral 6-gons, a useful theoretical bound on, say, the fraction
of unknots among 1273-gons seems entirely out of reach. On the other hand, it is
entirely reasonable to work on developing well-founded algorithms with verified
convergence and statistically defensible error bars for experimental work on such
questions, and that is precisely our aim in this part of the paper.
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5.1. Current sampling algorithms for random polygons. A wide variety of
sampling algorithms for random polygons have been proposed. They fall into
two main categories: Markov chain algorithms such as polygonal folds [52] or
crankshaft moves [41, 73] (cf. [1] for a discussion of these methods) and direct
sampling methods such as the “triangle method” [54] or the “generalized hedge-
hog” method [72] and the methods of Moore and Grosberg [53] and Diao, Ernst,
Montemayor and Ziegler [23–25] which are both based on the “sinc integral for-
mula” (7).

Each of these approaches has some defects. No existing Markov chain method
has been proved to converge to the standard measure, though it is generally con-
jectured that they do. It is unclear what measure the generalized hedgehog method
samples, while the triangle method clearly samples a submanifold6 of polygon
space. The Moore–Grosberg algorithm is known to sample the correct distribu-
tion, but faces certain practical problems. It is based on computing successive
piecewise-polynomial distributions for diagonal lengths of a closed polygon and
directly sampling from these one-dimensional distributions. There is no problem
with the convergence of this method, but the difficulty is that the polynomials
are high degree with large coefficients and many almost-cancellations, leading to
significant numerical problems with accurately evaluating them.7 These problems
are somewhat mitigated by the use of rational and multiple-precision arithmetic
in [53], but the number of edges in polygons sampled with these methods is inher-
ently limited. For instance, the text file giving the coefficients of the polynomials
needed to sample a random closed 95-gon is over 25 megabytes in length. Diao
et al. avoid this problem by approximating these distributions by normals, but this
approximation means that they are not quite8 sampling the standard measure on
polygon space.

5.2. The toric symplectic Markov Chain Monte Carlo algorithm. We intro-
duce a Markov Chain Monte Carlo algorithm for sampling toric symplectic man-
ifolds with an adjustable parameter β ∈ (0,1) explained below. We will call
this the TORIC-SYMPLECTIC-MCMC(β) algorithm or TSMCMC(β) for conve-
nience. Though we intend to apply this algorithm to our random walk spaces, it
works on any toric symplectic manifold, so we state the results in this section
and the next for an arbitrary 2n-dimensional toric symplectic manifold M with

6It is hard to know whether this restriction is important in practice. The submanifold may be suffi-
ciently “well-distributed” that most integrands of interest converge anyway. Or perhaps calculations
performed with the triangle method are dramatically wrong for some integrands!

7Hughes discusses these methods in Section 2.5.4 of his book on random walks [36], attributing
the formula rederived by Moore and Grosberg [53] to a 1946 paper of Treloar [71]. The problems
with evaluating these polynomials accurately were known by the 1970s, when Barakat [5] derived an
alternate expression for this probability density based on Fourier transform methods.

8Again, it is unclear what difference this makes in practice.
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moment map μ :M → R
n, moment polytope P , and action-angle parametrization

α :P × T n → M . The method is based on a classical Markov chain for sampling
convex regions of R

n called the “hit-and-run” algorithm: choose a direction at
random and sample along the intersection of that ray with the region to find the
next point in the chain. This method was introduced by Boneh and Golan [9] and
independently by Smith [64] as a means of generating random points in a high-
dimensional polytope. There is a well-developed theory around this method which
we will be able to make use of below.

Since the action and angle variables are independent, we could resample the
angles every time we take a step in the Markov chain sampling actions and the
chain would certainly converge. However, it might not be advantageous to do this:
it does take some time to update the angles, and if we are numerically integrating
a functional which is almost constant in the angles (a limiting case would be com-
puting a function of the chordlengths alone), this update would waste time. For
this reason, our algorithm has a parameter controlling the relative rate of updates
for the action and angle variables, called β . At each step of TSMCMC(β), with
probability β we update the action variables by sampling the moment polytope
P using hit-and-run and with probability 1 − β we update the angle variables by
sampling the torus T n uniformly. When β = 1

2 this is analogous to the random
scan Metropolis-within-Gibbs samplers discussed by Roberts and Rosenthal [62]
(see also [42]).
TORIC-SYMPLECTIC-MCMC( �p, �θ,β)

prob = UNIFORM-RANDOM-VARIATE(0,1)

if prob < β

then � Generate a new point in P using the hit-and-run algorithm.
�v = RANDOM-DIRECTION(n)

(t0, t1) = FIND-INTERSECTION-ENDPOINTS(P, �p, �v)

t = UNIFORM-RANDOM-VARIATE(t0, t1)

�p = �p + t �v
else � Generate a new point in T n uniformly.

for ind = 1 to n

do θind = UNIFORM-RANDOM-VARIATE(0,2π)

return ( �p, �θ)

We now prove that the distribution of samples produced by this Markov chain
converges geometrically to the distribution generated by the symplectic volume
on M . First, we show that the symplectic measure on M is invariant for TSMCMC.

To do so, recall that for any Markov chain � on a state space X, we can define
the m-step transition probability Pm(x,A) to be the probability that an m-step run
of the chain starting at x lands in the set A. This defines a measure Pm(x, ·) on X.
The transition kernel P = P1 is called reversible with respect to a probability
distribution π if∫

A
π(dx)P(x,B) =

∫
B

π(dx)P(x,A) for all measurable A,B ⊂ X.(20)
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In other words, the probability of moving from A to B is the same as the probability
of moving from B to A. If P is reversible with respect to π , then π is invariant
for P : letting A = X in (20), we see that πP = π .

In TSMCMC(β), the transition kernel P = βP1 + (1 − β)P2, where P1 is the
hit-and-run kernel on the moment polytope and P2(�θ, ·) = τ , where τ is the uni-
form measure on T n. Since hit-and-run is reversible on the moment polytope [65]
and since P2 is obviously reversible with respect to τ , we have the following.

PROPOSITION 25. TSMCMC(β) is reversible with respect to the symplectic
measure ν induced by symplectic volume on M . In particular, ν is invariant for
TSMCMC(β).

Recall that the total variation distance between two measures η1, η2 on a state
space X is given by

|η1 − η2|TV := sup
A any measurable set

∣∣η1(A) − η2(A)
∣∣.

We can now prove geometric convergence of the sample measure generated by
TSMCMC(β) to the symplectic measure in total variation distance.

THEOREM 26. Suppose that M is a toric symplectic manifold with mo-
ment polytope P and action-angle coordinates α :P × T n → M . Further, let
Pm( �p, �θ, ·) be the m-step transition probability of the Markov chain given by
TORIC-SYMPLECTIC-MCMC(β) and let ν be the symplectic measure on M .

There are constants R < ∞ and ρ < 1 so that for any ( �p, �θ) ∈ int(P ) × T n,∣∣α�Pm( �p, �θ, ·) − ν
∣∣
TV < Rρm.

That is, for any choice of starting point, the pushforward by α of the probability
measure generated by TORIC-SYMPLECTIC-MCMC(β) on P × T n converges
geometrically (in the number of steps taken in the chain) to the symplectic measure
on M .

PROOF. Let λ be Lebesgue measure on the moment polytope P and, as above,
let τ be uniform measure on the torus T n. By Theorem 1, it suffices to show that∣∣Pm( �p, �θ, ·) − λ × τ

∣∣
TV < Rρm.

Since the transition kernels P1 and P2 commute, for any nonnegative integers a

and b and partitions i1, . . . , ik of a and j1, . . . , j� of b we have(
P i1

1 Pj1
2 · · ·P ik

1 Pj�

2

)
( �p, �θ, ·) = (

Pa
1Pb

2
)
( �p, �θ, ·)

(21)
= Pa

1 ( �p, ·) ×Pb
2 (�θ, ·) = Pa

1 ( �p, ·) × τ,

where the last equality follows from the fact that P2(�θ, ·) = τ for any �θ ∈ T n.
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The total variation distance between product measures is bounded above by the
sum of the total variation distances of the factors (this goes back at least to Blum
and Pathak [8]; see Sendler [63] for a proof), so we have that∣∣Pa

1 ( �p, ·) ×Pb
2 (�θ, ·) − λ × τ

∣∣
TV = ∣∣Pa

1 ( �p, ·) × τ − λ × τ
∣∣
TV

≤ ∣∣Pa
1 ( �p, ·) − λ

∣∣
TV + |τ − τ |TV(22)

= ∣∣Pa
1 ( �p, ·) − λ

∣∣
TV.

Using [65], Theorem 3, the right-hand side is bounded above by (1 − ξ

n2n−1 )a−1

where ξ is the ratio of the volume of P and the volume of the smallest round ball
containing P . Let

κ :=
(

1 − ξ

n2n−1

)
.

Then combining (21), (22) and the binomial theorem yields∣∣Pm( �p, �θ, ·) − λ × τ
∣∣
TV = ∣∣(βP1 + (1 − β)P2

)m
( �p, �θ, ·) − λ × τ

∣∣
TV

=
∣∣∣∣∣

m∑
i=0

(
m

i

)
βm−i (1 − β)i

(
Pm−i

1 ( �p, ·) × τ − λ × τ
)∣∣∣∣∣

TV

≤
m∑

i=0

(
m

i

)
βm−i (1 − β)iκm−i−1

= 1

κ

(
1 + β(κ − 1)

)m = 1

κ

(
1 − βξ

n2n−1

)m

.

The ratio ξ of the volume of P and the volume of smallest round ball contain-
ing P is always a positive number with absolute value less than 1, and hence
0 < 1 − βξ/n2n−1 < 1. This completes the proof. �

This proposition provides a comforting theoretical guarantee that TORIC-
SYMPLECTIC-MCMC(β) will eventually work. The proof provides a way to es-
timate the constants R and ρ. However, in practice, these upper bounds are far
too large to be useful. Further, the rate of convergence for any given run will de-
pend on the shape and dimension of the moment polytope P and on the starting
position x. There is quite a bit known about the performance of hit-and-run in
general theoretical terms; we recommend the excellent survey article of Andersen
and Diaconis [2]. To give one example, Lòvasz and Vempala have shown [45] (see
also [44]) that the number of steps of hit-and-run required to reduce the total vari-
ation distance between Pm(x, ·) and Lebesgue measure by an order of magnitude
is proportional9 to n3 where n is the dimension of the polytope.

9The constant of proportionality is large and depends on the geometry of the polytope, and the
amount of time required to reduce the total variation distance to a fixed amount from the start depends
on the distance from the starting point to the boundary of the polytope.
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5.3. The Markov Chain CLT and Geyer’s IPS error bounds for TSMCMC inte-
gration. We now know that the TSMCMC(β) algorithm will eventually sample
from the correct probability measure on any toric symplectic manifold, and in par-
ticular from the correct probability distributions on closed and confined random
walks. We should pause to appreciate the significance of this result for a moment—
while many Markov chain samplers have been proposed for closed polygons, none
have been proved to converge to the correct measure. Further, there has never been
a Markov chain sampler for closed polygons in rooted spherical confinement (or,
as far as we know, for slab-confined or half-space confined arms).

However, the situation remains in some ways unsatisfactory. If we wish to com-
pute the probability of an event in one of these probability spaces of polygons,
we must do an integral over the space by collecting sample values from a Markov
chain. But since we do not have any explicit bounds on the rate of convergence
of our Markov chains, we do not know how long to run the sampler, or how far
the resulting sample mean might be from the integral over the space. To answer
these questions, we need two standard tools: the Markov Chain Central Limit The-
orem and Geyer’s Initial Positive Sequence (IPS) error estimators for MCMC in-
tegration [29]. For the convenience of readers unfamiliar with these methods, we
summarize the construction here. Since this is basically standard material, many
readers may wish to skip ahead to the next section.

Combining Proposition 26 with [70], Theorem 5 (which is based on [21],
Corollary 4.2) yields a central limit theorem for the TORIC-SYMPLECTIC-
MCMC(β) algorithm. To set notation, suppose that a run of the TSMCMC(β)

algorithm produces the sequence of points (( �p0, �θ0), ( �p1, �θ1), . . .), where the ini-
tial point ( �p0, �θ0) is drawn from some initial distribution (e.g., a delta distribution).
For any run R, let

SMean(f ;R,m) := 1

m

m∑
k=1

f ( �pk, �θk)

be the sample mean of the values of a function f :M → R over the first m steps
in R. We will use “f ” interchangeably to refer to the original function f :M →R

or its expression in action-angle coordinates f ◦ α :P × T n →R.
Let E(f ;ν) be the expected value of f with respect to the symplectic measure

ν on M . For each m the normalized sample error
√

m(SMean(f ;R,m)−E(f ;ν))

is a random variable (as it depends on the various random choices in the run R).

PROPOSITION 27. Suppose f is a square-integrable real-valued function on
the toric symplectic manifold M . Then regardless of the initial distribution, there
exists a real number σ(f ) so that

√
m

(
SMean(f ;R,m) − E(f ;ν)

) w−→ N
(
0, σ (f )2)

,(23)

where N (0, σ (f )2) is the Gaussian distribution with mean 0 and standard devia-
tion σ(f ) and the superscript w denotes weak convergence.
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Given σ(f ) and a run R, the range SMean(f ;R,m) ± 1.96σ(f )/
√

m is an ap-
proximate 95% confidence interval for the true expected value E(f ;ν). Abstractly,
we can find σ(f ) as follows.

The variance of the left-hand side of (23) is

mVar
(
SMean(f ;R,m)

)
= 1

m

m∑
i=1

Var
(
f ( �pi, �θi)

) + 1

m

m∑
i=1

m∑
j=1
j �=i

Cov
(
f ( �pi, �θi), f ( �pj , �θj )

)
.

Since the convergence in Proposition 27 is independent of the initial distribution,
σ(f ) will be the limit of this quantity for any initial distribution. Following Chan
and Geyer [19], suppose the initial distribution is the stationary distribution. In that
case, the quantities

γ0(f ) := Var
(
f ( �pi, �θi)

)
and

γk(f ) := Cov
(
f ( �pi, �θi), f ( �pi+k, �θi+k)

)
(the stationary variance and lag k autocovariance, resp.) are independent of i. Then

σ(f )2 = lim
m→∞

(
γ0(f ) + 2

m−1∑
k=1

m − k

m
γk(f )

)
= γ0(f ) + 2

∞∑
k=1

γk(f )

provided the sum on the right-hand side converges.
In what follows, it will be convenient to write the above as

σ(f )2 = γ0(f ) + 2γ1(f ) + 2
∞∑

k=1

�k(f ),(24)

where �k(f ) := γ2k(f ) + γ2k+1(f ). We emphasize that the quantities γ0(f ),

γk(f ),�k(f ) are associated to the stationary Markov chain.
In practice, of course, these quantities, and hence this expression for σ(f )

are not computable. After all, if we could sample directly from the symplec-
tic measure on M there would be no need for TSMCMC. However, as pointed
out by Geyer [29], σ(f ) can be estimated from the sample data that produced
SMean(f ;R,m). Specifically, we will estimate the stationary lagged autocovari-
ance γk(f ) by the following quantity:

γ̄k(f ) = 1

m

m−k∑
i=1

[
f ( �pi, �θi) − SMean(f ;R,m)

]
(25)

× [
f ( �pi+k, �θi+k) − SMean(f ;R,m)

]
.



SYMPLECTIC GEOMETRY OF CLOSED RANDOM WALKS 577

Multiplication by 1
m

rather than 1
m−k

is not a typographical error (cf. [29], Sec-
tion 3.1). Let �̄k(f ) = γ̄2k(f ) + γ̄2k+1(f ). Then for any N > 0

σ̄m,N(f )2 := γ̄0(f ) + 2γ̄1(f ) + 2
N∑

k=1

�̄k(f )(26)

is an estimator for σ(f )2. We expect the �̄k to decrease to zero as k → ∞ since
very distant points in the run of the Markov chain should become statistically un-
correlated. Indeed, since TSMCMC is reversible, Geyer shows this is true for the
stationary chain.

THEOREM 28 (Geyer [29], Theorem 3.1). �k is strictly positive, strictly de-
creasing and strictly convex as a function of k.

We expect, then, that any nonpositivity, nonmonotonicity, or nonconvexity of
the �̄k should be due to k being sufficiently large that �̄k is dominated by noise. In
particular, this suggests that a reasonable choice for N in (26) is the first N such
that �̄N ≤ 0, since the terms past this point will be dominated by noise, and hence
tend to cancel each other.

DEFINITION 29. Given a function f and a length-m run of the TSMCMC
algorithm as above, let N be the largest integer so that �̄1(f ), . . . , �̄N(f ) are all
strictly positive. Then the initial positive sequence estimator for σ(f ) is

σ̄m(f )2 := σ̄m,N(f )2 = γ̄0(f ) + 2γ̄1(f ) + 2
N∑

k=1

�̄k(f ).

Slightly more refined initial sequence estimators which take into account the
monotonicity and convexity from Proposition 28 are also possible; see [29] for
details.

The pleasant result of all this is that σ̄m is a statistically consistent overestimate
of the actual variance.

THEOREM 30 (Geyer [29], Theorem 3.2). For almost all sample paths of
TSMCMC,

lim inf
m→∞ σ̄m(f )2 ≥ σ(f )2.

Therefore, we propose the following procedure for Toric Symplectic Markov
Chain Monte Carlo integration which yields statistically consistent error bars on
the estimate of the true value of the integral.

TORIC SYMPLECTIC MARKOV CHAIN MONTE CARLO INTEGRATION. Let
f be a square-integrable function on a 2n-dimensional toric symplectic manifold
M with moment map μ :M →R

n:
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1. Find the fixed points of the Hamiltonian torus action. The moment polytope
P is the convex hull of the images of these fixed points under μ.

2. Convert this vertex description of P to a halfspace description. In other
words, realize P as the subset of points in R

n satisfying a collection of linear
inequalities.10

3. Pick the parameter β ∈ (0,1). We recommend repeating the entire procedure
for several short runs with various β values to decide on the best β for a given
application. The final error estimate is a good measure of how well the chain has
converged after a given amount of runtime.

4. Pick a point ( �p0, �θ0) ∈ P × T n. This will be the starting point of the Markov
chain. Ideally, �p0 should be as far as possible from the boundary of P .

5. Using ( �p0, �θ0) as the initial input, iterate the TSMCMC(β) algorithm for m

steps (m � 1). This produces a finite sequence (( �p1, �θ1), . . . , ( �pm, �θm)) of points
in P × T n.

6. Let SMean(f ;m) = 1
m

∑m
i=1 f ( �pi, �θi) be the average value of f over the run

of points produced in the previous step.
7. Compute the initial positive sequence estimator σ̄m(f )2.
8. SMean(f ;m)± 1.96σ̄m(f )/

√
m is an approximate 95% confidence interval

for the true expected value of the function f .

5.4. Tuning the TSMCMC algorithm for closed and confined polygons. For
polygon sampling, the TSMCMC(β) algorithm has several adjustable parameters.
We must always choose a starting polygon. For unconfined polygons, we may
choose any triangulation of the n-gon and get a corresponding moment polytope.
Finally, we must make an appropriate choice of β . In this section, we report ex-
perimental results which address these questions. In our experiments, we always
integrated total curvature and used equilateral closed polygons. At least for uncon-
fined polygons, we know the exact value of the expectation from Theorem 12. To
measure convergence, we used the Geyer IPS error estimate as a measure of qual-
ity (lower is better). Since different step types take very different amounts of time
to run, we ran different variations of the algorithm for a consistent amount of CPU
time, even though this led to very different step counts.

We discovered in our experiments that the rate of convergence of hit-and-run
depends strongly on the start point. Our original choice of start point—the regular
planar equilateral n-gon—turned out to be a very poor performer. While it seems
like a natural choice mathematically, the regular n-gon is tucked away in a corner
of the moment polytope and it takes hit-and-run quite a while to escape this trap.
After a number of experiments, the most consistently desirable start point was ob-
tained as follows. First, fold the regular n-gon randomly along the diagonals of the

10For small problems, this can be done algorithmically [4, 20, 28]. Generally, this will require an
analysis of the moment polytope, such as the one performed above for the moment polytopes of
polygon spaces.



SYMPLECTIC GEOMETRY OF CLOSED RANDOM WALKS 579

given triangulation. Then, borrowing an idea from Section 5.5, randomly reorder
the resulting edge set (we will see below that this still results in a closed, equi-
lateral polygon). We used this as a starting configuration in all of our unconfined
experiments.

We also discovered that hit-and-run can converge relatively slowly when sam-
pling high-dimensional polytopes, leading to very long-range autocorrelations in
the resulting Markov chain. Following a suggestion of Soteros [66], after consid-
erable experimentation we settled on the convention that a single “moment poly-
tope” step in our implementation of TSMCMC(β) would represent ten iterations
of hit-and-run on the moment polytope. This reduced autocorrelations greatly and
led to better convergence overall. We used this convention for all our numerical
experiments below.

The TORIC-SYMPLECTIC-MCMC(β) algorithm depends on a choice of trian-
gulation T for the n-gon to determine the moment polytope P . There is consid-
erable freedom in this choice, since the number of triangulations of an n-gon is
the Catalan number Cn−2 = 1

n−1

(2n−4
n−2

)
([67], Exercise 6.19). Using Stirling’s ap-

proximation, this can be approximated for large n by Cn−2 ∼ 4n−2/(n − 2)3/2√π

([56], 26.5.6). We have proved above that the TORIC-SYMPLECTIC-MCMC(β)

algorithm will converge for any of these triangulations, but the rate of convergence
is expected to depend on the triangulation, which determines the geometry of the
moment polytope. This geometry directly affects the rate of convergence of hit-
and-run; “long and skinny” polytopes are harder to sample than “round” ones (see
Lovasz [44]).

To get a sense of the effect of the triangulation on the performance of
TSMCMC(β), we set β = 0.5 and n = 23 and ran the algorithm from 20 start
points for 20,000 steps. We then took the average IPS error bar for expected to-
tal curvature over these 20 runs as a measure of convergence. We repeated this
analysis for 300 random triangulations and 300 repeats of three triangulations that
we called the “fan,” “teeth” and “spiral” triangulations. The results are shown in
Figure 7. The definition of the fan and teeth triangulations will be obvious from
that figure; the spiral triangulation is generated by traversing the n-gon in order
repeatedly, joining every other vertex along the traversal until the triangulation
is complete. Our experiments showed that this spiral triangulation was the best
performing triangulation among our candidates, so we standardized on that trian-
gulation for further numerical experiments.

We then considered the effect of varying the parameter β for the TSMCMC(β)
algorithm using the spiral triangulation. We ran a series of trials computing ex-
pected total curvature for 64-gons over 10 minute runs, while varying β from 0.05
(almost all dihedral steps) to 0.95 (almost all moment polytope steps) over 10
minute runs. We repeated each run 50 times to get a sense of the variability in the
Geyer IPS error estimators for different runs. Since dihedral steps are consider-
ably faster than moment polytope steps, the step counts varied from about 1 to 9
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FIG. 7. We tested the average IPS 95% confidence error estimate for the expected value of total
curvature over random equilateral 23-gons over 20 runs of the TSMCMC(0.5) algorithm. Each run
had a starting point generated by folding and permuting a regular n-gon as described above, and
ran for 20,000 steps. We tried 300 random n-gons and 300 repetitions of the same procedure for
the “spiral,” “fan,” and “teeth” triangulations shown above. Below each triangulation is shown the
range of average error bars observed over 300 repetitions of the 20-start-point trials; for the random
triangulation we report the best average error bar over a single 20-start-point-trial observed for
any of the 300 random triangulations we computed. We can see that the algorithm based on the
spiral triangulation generally outperforms algorithms based on even the best of the 300 random
triangulations, while algorithms based on the fan and teeth triangulations converged more slowly.

million. The resulting Geyer IPS error estimators are shown in Figure 8. Our rec-
ommendation is to use the spiral triangulation and β = 0.5 for experiments with
unconfined polygons. From the 50 runs using the recommended β = 0.5, the run
with the median IPS error estimate produced an expected total curvature estimate
of 101.724 ± 0.142 using about 4.6 million samples; recall that we computed in
Table 2 that the expected value of total curvature for equilateral, unconfined 64-
gons is a complicated fraction close to 101.7278.

FIG. 8. The figure above shows a box-and-whisker plot for the IPS error estimators observed in
computing expected total curvature over 50 runs of the TSMCMC(β) algorithm for various values
of β . The boxes show the 1

4 to 3
4 quantiles of the data, while the whiskers extend from the 0.05

quantile to the 0.95 quantile. While the whiskers show that there is plenty of variability in the data,
the general trend is that the performance of the algorithm improves rapidly as β varies from 0.05 to
0.25, modestly as β varies from 0.25 to 0.5 and is basically constant for β from 0.5 to 0.95.
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5.5. Crankshafts, folds and permutation steps for unconfined equilateral poly-
gons. It is an old observation that the space of closed equilateral n-gons has an
action of the permutation group Sn given by permuting the edges. For instance, the
“triangle method” of Moore, Lua and Grosberg [54] is based on this idea. Since all
edges are the same length, a reordered polygon is clearly still equilateral. It is also
closed: the end-to-end displacement of the polygon is the vector sum of the edges,
which is invariant under reordering. It seems desirable, but not entirely obvious,
that this action preserves the probability measure on P̂ol3(n; �1).

LEMMA 31. The action of the permutation group Sn on P̂ol3(n; �1) given by
reordering the edges preserves the standard measure.

PROOF. By permuting coordinates, the symmetric group acts on the n-fold
product of spheres Arm3(n; �1) = S2(1)×· · ·×S2(1) by isometries. This descends
to an action by isometries on the Riemannian submanifold Pol3(n; �1) ⊂ Arm3(n; �1)

since we have already seen that Pol3(n; �1) is invariant under the action of Sn.
Though a measure-preserving action on a space generally does not preserve Haus-
dorff measure on subspaces of lower dimension, the condition that this action is
by isometries is quite strong, and does imply that the restriction of this action to
Pol3(n; �1) is measure-preserving there. It is then standard that the corresponding
action on the quotient space P̂ol3(n; �1) = Pol3(n; �1)/SO(3) is measure-preserving
there because P̂ol3(n; �1) has the pushfoward measure. �

As a consequence, we will see that we can mix permutation steps with standard
TSMCMC steps without losing geometric convergence or the applicability of the
central limit theorem. Such a Markov chain is a mixture of dihedral angle steps,
moment polytope steps, and permutation steps in some proportion. It is interesting
to note that we can recover algorithms very similar to the standard “crankshaft”
and “fold” Markov chains by allowing no moment polytope steps in the chain.

Since previous authors have observed that adding permutation steps can sig-
nificantly speed up convergence in polygon samplers [1], we now experiment to
see whether our algorithm, too, can be improved by mixing in some permutations.
More precisely, we can define a new Markov chain POLYGON-PERMUTATION on
P̂ol3(n; �1) by permuting edges at each step:

POLYGON-PERMUTATION(pol)

σ = UNIFORM-PERMUTATION(n)

pol = PERMUTE-EDGES(pol, σ )

return pol

Since the symplectic measure on P̂ol3(n; �1) is permutation-invariant, the sym-
plectic measure is stationary for POLYGON-PERMUTATION.

Now, we can mix TSMCMC(β) with POLYGON-PERMUTATION to get the
following PERMUTATION-TORIC-SYMPLECTIC-MCMC(β, δ) algorithm, where
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δ ∈ [0,1) gives the probability of doing a permutation step rather than a
TSMCMC(β) step. Recall that α :P × T n−3 → P̂ol3(n; �1) is the action-angle
parametrization, where P is the moment polytope induced by the chosen trian-
gulation.

PERMUTATION-TORIC-SYMPLECTIC-MCMC( �p, �θ,β, δ)

prob = UNIFORM-RANDOM-VARIATE(0,1)

if prob < δ

then ( �p, �θ) = α−1(POLYGON-PERMUTATION(α( �p, �θ)))

else ( �p, �θ) = TORIC-SYMPLECTIC-MCMC( �p, �θ,β)

return ( �p, �θ)

Although POLYGON-PERMUTATION is not ergodic, the fact that it is sta-
tionary with respect to the symplectic measure is, after combining Proposi-
tion 26 and [70], Proposition 3, enough to imply that PERMUTATION-TORIC-
SYMPLECTIC-MCMC(β, δ) is (strongly) uniformly ergodic.

PROPOSITION 32. Let P̂ be the transition kernel for PTSMCMC(β, δ) with
0 < β < 1 and δ < 1 and let ν be the symplectic measure on P̂ol3(n; �1). Then there
exist constants R < ∞ and ρ < 1 so that for any ( �p, �θ) ∈ int(P ) × T n−3,∣∣α�P̂m( �p, �θ, ·) − ν

∣∣
TV < Rρm.

Just as in Proposition 27, since PTSMCMC(β, δ) is uniformly ergodic and re-
versible with respect to symplectic measure, it satisfies a central limit theorem.

PROPOSITION 33. Suppose f : P̂ol3(n; �1) → R is square-integrable. For any
run R of PTSMCMC(β, δ), let SMean(f ;R,m) be the sample mean of the value
of f over the first m steps of R. Then there exists a real number σ(f ) so that

√
m

(
SMean(f ;R,m) − E(f ;ν)

) w−→ N
(
0, σ (f )2)

.

The rest of the machinery of Section 5.3, including the initial positive sequence
estimator for σ(f )2, also applies. As a consequence, we get a modified Toric
Symplectic Markov Chain Monte Carlo integration procedure adapted to uncon-
fined, equilateral polygons. Note that the full symmetric group Sn does not act
on P̂ol3(n; �r) when not all ri are equal, so PTSMCMC(β, δ) cannot be used to
sample nonequilateral polygons. Reordering the edges of a polygon in P̂ol3(n; �r)
by σ ∈ Sn would still yield a closed polygon, but the new polygon would belong
to a different space: P̂ol3(n;σ · �r). However, when many edgelengths are equal,
a subgroup of the symmetric group which permutes only those edges certainly
acts on P̂ol3(n; �r). We recommend making use of this smaller set of permuta-
tions when possible. Permuting edges never preserves spherical confinement, so
PTSMCMC(β, δ) is inapplicable to confined polygon sampling.
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FIG. 9. This plot shows the IPS error estimator for the average total curvature of unconfined equi-
lateral 64-gons. The IPS error was computed for 10-minute runs of the PTSMCMC(β, δ) Markov
chain algorithm. The values of δ (the fraction of permutations among all steps) ranged from 0 to
0.95 in steps of 0.05 in the figure on the left, and from 0.05 to 0.95 in the figure on the right. In
both plots, the values of β (the fraction of moment polytope steps among nonpermutation steps)
ranged from 0.05 to 0.95 in steps of 0.05. When δ = 0, this is just the TSMCMC(β) chain; these
are the comparatively very large error estimates in the back row of the left figure. Removing those
runs yields the plot on the right. We observed that convergence was very sensitive to δ, with error
bars improving dramatically as soon as the fraction of permutation steps becomes positive: even the
worst PTSMCMC(β, δ) run with δ > 0 had error bars 3 times smaller than the error bars of the best
TSMCMC(β) run. From the view at right, we can see that the error bars continue to improve more
modestly as δ increases. Varying β has little effect on the error estimate when δ is large.

Having defined PTSMCMC(β, δ) and settled on a canonical starting point (the
folded, permuted regular n-gon) and triangulation (the spiral), it remains to decide
on the best values of β and δ. The question is complicated by the fact that the
three different types of steps—permutations, folding steps and moment-polytope
hit-and-run steps—take different amounts of CPU time. To attempt to evaluate
the various possibilities fairly, we ran experiments computing the expected total
curvature for 64-gons where each experiment ran for 10 minutes of CPU time,
completing between 2 million and 15 million steps depending on the mixture of
step types. We measured the 95% confidence IPS error bars for each run, producing
the data in Figure 9, and used the size of this error bar as a measure of convergence.

The data in Figure 9 show that the fraction δ of permutation steps is the most
important factor in determining the rate of convergence in the PTSMCMC(β, δ)
algorithm. This shows that the extra complication in defining PTSMCMC(β, δ)
for unconfined equilateral polygons is worth it: the error bars produced by
PTSMCMC(β, δ) to compute the expected total curvature of unconfined equi-
lateral 64-gons are anywhere from 3 to 30 times smaller than the error bars for
TSMCMC(β).

Larger values of β produce smaller error bars when δ = 0, meaning that a large
fraction of moment polytope steps are needed to produce mixing when there are
no permutation steps. On the other hand, as we can see in Figure 10, even when
δ = 0.05 the permutation steps provide enough mixing that β has virtually no
effect on the IPS standard deviation estimator. In this case, the effect of β on the
size of the error bars is due to the fact that dihedral steps are faster than moment
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FIG. 10. These plots show the IPS error estimator and the IPS standard deviation estimator for the
average total curvature of unconfined equilateral 64-gons using 10-minute runs of PTSMCMC(β ,
0.05). Although the IPS error estimate decreases as β decreases, the plot on the right demonstrates
that the IPS standard deviation estimator is essentially constant—and presumably close to the true
standard deviation of the total curvature function—across the different values of β . Since the IPS
error estimate is proportional to the standard deviation estimate divided by the square root of the
number of samples, we can see that the variation in IPS error bars for these runs is almost entirely
due to the difference in the number of samples.

polytope steps, so runs with small β produce more samples, and hence smaller
error bars.

Once δ is large, varying β seems to have little effect on the convergence rate. In
fact, though our theory above no longer proves convergence, we seem to get a very
competitive algorithm by removing moment polytope steps altogether (β = 0) and
performing only permutations and dihedral steps. This algorithm corresponds to
the “fold or crankshaft with permutations mixed in” method.

In practice, we make a preliminary recommendation of δ = 0.9 and β = 0.5
for experimental work. These parameters guarantee convergence (by our work
above) while optimizing the convergence rate. Using these recommended param-
eters, a 10-minute run of PTSMCMC(0.5,0.9) for unconfined, equilateral 64-
gons produced just under 7 million samples and an expected total curvature of
101.7276 ± 0.0044, which compares quite favorably to the actual expected total
curvature of 101.7278.

We observed that the absolute error in our computations of expected total cur-
vature was less than our error estimate in 361 of 380 runs (95%), which is exactly
what we would expect from a 95% confidence value estimator. We take this as
solid evidence that the Markov chain is converging and the error estimators are
working as expected.

5.6. Calculations on confined polygons. Recall from Definition 22 that a poly-
gon is in spherical confinement in a sphere of radius R centered at vertex v1 of
the polygon if the vector �d of fan diagonals of the polygon lies in the confined
fan polytope Pn,R(�r). This means that we can sample such polygons uniformly
by restricting the hit-and-run steps in TSMCMC(β) to the confined fan polytope
Pn,R(�r).

We again only explored the situation for equilateral polygons of edgelength
one. After some experimentation, we settled on the “folded triangle” as a start
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FIG. 11. These box-and-whisker plots show the results of computing the expected total curvature
for confined equilateral 23-gons with edgelength 1. The confinement model here is “rooted spherical
confinement,” meaning that each vertex is within a specified distance of the first vertex. For each β

value, we repeated 10-minute experiments 50 times, computing 50 values for the Geyer IPS estimator.
The boxes show the second and third quartiles of these 50 data points, while the whiskers show the
0.05 to 0.95 quantiles of the IPS estimators observed.

point. This polygon is constructed by setting each diagonal length di to one and
choosing dihedrals randomly. This polygon is contained in spherical confinement
for every R ≥ 1, so we could use it for all of our experiments. We investigated
23-gons confined to spheres of radius 2, 4, 6, 8, 10 and 12, measuring the Geyer
IPS error estimate for values of β selected from 0.05 (almost all dihedral steps)
to 0.95 (almost all moment polytope steps) over 10-minute runs. Again, since di-
hedral steps are faster to run than moment polytope steps, the step counts varied
over the course of the experiments. For instance, in the radius 2 experiments, we
observed step counts as high as 35 million and as low as 7 million over runs with
various β values. Our integrand was again total curvature. Since we do not have an
exact solution for the expected total curvature of a confined n-gon, we were unable
to check whether the error bars predicted actual errors. However, it was comfort-
ing to note that the answers we got from runs with various parameters were very
consistent. We ran each experiment 50 times to get a sense of the repeatability of
the Geyer IPS error bar; the results are shown in Figure 11.

We observed first that there is a clear trend in the error bar data. For the tightly
confined runs, there was a noticeable preference for β ∼ 0.5, while in less tight
confinement the results generally continued to improve modestly as β increased.
Still, we think the data supports a general recommendation of β = 0.5 for future
confined experiments, with a possible decrease to β = 0.4 in very tight confine-
ment, and this is our recommendation to future investigators.

A very striking observation from Figure 11 is that the error bars for the tightly
confined 23-gons in a sphere of radius 2 are about 10 times smaller than the error
bars for the very loosely confined 23-gons in a sphere of radius 10. That is, our
algorithm works better when the polygon is in tighter confinement. In some sense,
this is to be expected, since the space being sampled is smaller. However, it flies
in the face of the natural intuition that confined sampling should be numerically
more difficult than unconfined sampling.
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TABLE 1
This table shows the expected total curvature of equilateral 50- and 90-gons in rooted spherical
confinement. We sampled equilateral 50- and 90-gons in confinement radii from 1.1 to 1.6 using

20-minute runs of TSMCMC(0.5) and computed the average total curvature and IPS error bars for
each run. Each 50-gon run yielded about 14.5 million samples, while each 90-gon run yielded

about 8 million samples. The bottom line shows the exact expectation of total curvature for
unconfined polygons given by Theorem 12. More extensive information on expectations of confined

total curvatures has been computed by Diao, Ernst, Montemayor and Ziegler [27]

Expected total curvature of tightly-confined

Confinement
radius

equilateral 50- and 90-gons

50-gons 90-gons

1.1 103.1120 ± 0.0093 185.701 ± 0.028
1.2 100.1900 ± 0.0089 180.261 ± 0.028
1.3 97.8369 ± 0.0088 175.947 ± 0.028
1.4 95.8891 ± 0.0090 172.346 ± 0.027
1.5 94.1979 ± 0.0091 169.271 ± 0.028
1.6 92.7501 ± 0.0094 166.660 ± 0.029
∞ 79.74197470 142.5630093

Using TSMCMC(0.5), we computed the expected total curvature of tightly con-
fined equilateral 50- and 90-gons. Those expectations are shown in Table 1. We can
compare these data directly by looking at expected turning angles as in Figure 12.
In this very tight confinement regime, the effect of confinement radius on expected
turning angle dominates the effect of the number of edges.

FIG. 12. The plot on the left shows the expected turning angles of equilateral 50-gons (solid) and
equilateral 90-gons (dashed) in rooted spherical confinement of radii from 1.1 to 1.6. The horizontal
lines show the expected turning angles for unconfined 50- and 90-gons computed using Theorem 12,
which are �1.59484 and �1.58403, respectively. The plot on the right shows the differences between
the expected turning angles of equilateral 50-gons and the expected turning angles of equilateral
90-gons. The black dots show this difference for various confinement radii, while the dashed line
shows the corresponding difference for unconfined polygons. Without confinement, we expect poly-
gons with more edges to have smaller expected turning angle, since each individual edge feels less
pressure to get back to the starting point. These data provide evidence this effect dissipates and even
reverses in extremely tight confinement.
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6. Comparison with existing work, conclusion and future directions. Now
that we have laid out the symplectic theory of random walks and a few of its
consequences, it is time to look back and see how we can reconcile this point of
view with the existing understanding of closed random walks. In the methods of
Moore and Grosberg [53] and Diao et al. [23], closed random walks are generated
incrementally, using distributions derived from the p.d.f. �n(��) given in (12) for
the end-to-end distance of a random walk of n steps. To review, the key idea is
that if we have taken m − 1 steps of an n-step closed walk and arrived at the mth
vertex �vm, the p.d.f. of the next vertex �vm+1 (conditioned on the steps we have
already taken) is given by

P(�vm+1|�v1, . . . , �vm) = �1(�vm+1 − �vm)�n−m−1(�vm+1 − �v1)

�n−m(�vm − �v1)
,

which is some complicated product of piecewise-polynomial �k(��) functions. We
can sample �vm+1 from this distribution, and hence generate the rest of the walk
iteratively.

From the moment polytope point of view, the situation is considerably sim-
pler. First, we observe that everything in the equation above can be expressed
in terms of diagonal lengths in the fan triangulation polytope, since the length
of the vector �� is the only thing that matters in the formula for �k(��). If we let
�v1 = �0 by convention, then conditioning on �v1, . . . , �vm is simply restricting our
attention to the slice of the moment polytope given by setting the diagonal lengths
d1 = |�v3|, d2 = |�v4|, . . . , dm−2 = |�vm|. The p.d.f. P(�vm+1|�v1, . . . , �vm) is then the
projection of the measure on this slice of the moment polytope to the coordinate
dm−1. This distribution is piecewise-polynomial precisely because it is the projec-
tion of Lebesgue measure on a convex polytope with a finite number of faces.

Of course, projecting volume measures of successive slices to successive co-
ordinates is a perfectly legitimate way to sample a convex polytope, which is an-
other explanation for why these methods work; they are basically sampling suc-
cessive marginals of the coordinate distributions on a succession of smaller convex
polytopes. By contrast, our method generates the entire vector of diagonal lengths
d1, . . . , dn−3 simultaneously according to their joint distribution by sampling the
moment polytope directly. More importantly, it offers a geometric insight into what
this joint distribution is which seems like it would be very hard to develop by ana-
lyzing (12).

In conclusion, the moment polytope picture offers a clarifying and useful per-
spective on closed and confined random walks. It is clear that we have only
scratched the surface of this topic in this paper, and that many fascinating ques-
tions remain to be explored both theoretically and computationally. In the interest
of continuing the conversation, we provide an unordered list of open questions
suggested by the work above.
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• Previous studies of the relative efficiency of polygon sampling algorithms have
focused on minimizing pairwise correlations between edges as a measure of per-
formance. Proposition 18 suggests a more subtle approach to evaluating sample
quality: measure the uniformity of the distribution of diagonal lengths over the
moment polytope and of dihedral angles over the torus (cf. [48]).

• It remains open to try to extend these methods to prove that a chain consisting
only of permutation and dihedral steps is still strongly geometrically convergent
on unconfined equilateral polygon space. This would lead directly to a proof of
convergence for the crankshaft and fold algorithms, and hence place many years
of sampling experiments using these methods on a solid theoretical foundation.

• Can we use the moment polytope pictures above for confined polygons to prove
theorems about polygons in confinement? For instance, it would be very inter-
esting to show that the expectation of total curvature is monotonic in the radius
of confinement.

• What is the corresponding picture for random planar polygons? Of course, we
can see the planar polygons as a special slice of the action-angle coordinates
where the angles are all zero or π . But is it true that sampling this slice accord-
ing to Hausdorff measure in action-angle space corresponds to sampling planar
polygons according to their Hausdorff measure inside space polygons?11 If not,
can we correct the measure somehow? Or is there another picture for planar
polygons entirely?

• Can we understand the triangulation polytopes better? Can we compute their
centers of mass explicitly, for example? It is well known that finding the cen-
ter of mass of a high-dimensional polytope is algorithmically difficult, so we
cannot hope for a purely mechanical solution to the problem. But a deeper un-
derstanding of these polytopes seems likely to result in interesting probability
theorems.

• Why are permutation steps so effective in the PTSMCMC Markov chain? It
seems easy to compute that the number of points in the permutation group orbit
of an n-edge polygon is growing much faster than the volume of equilateral
polygon space computed by [39, 47, 69] and given above as Corollary 15. Can
we prove that the points in this orbit are usually well distributed over polygon
space? This would give an appealing proof of the effectiveness of Grosberg’s
triangle method for polygon sampling [46, 54, 55].

• There is a large theory of “low-discrepancy” or “quasi-random” sequences on
the torus which can provide better results in numerical integration than uniform
random sampling. Would it be helpful to choose our dihedrals from such a se-
quence in the integration method above?

11These questions are less obvious than they may appear at first glance: the cylindrical coordinates
θ and z are action-angle coordinates on the sphere, but it is not the case that the arclength measure
on a curve in the θ–z cylinder pushes forward to the arclength measure on the image of the curve on
the sphere, even though the area measure on the θ–z cylinder does push forward to the standard area
measure on the sphere.
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• Now that we can sample confined polygons quickly, with solid error bars on our
calculations, what frontiers does this open in the numerical study of confined
polymers? We take our cues from the pioneering work of Diao, Ernst, Mon-
temayor and Ziegler [22–25], but are eager to explore this new experimental
domain. For instance, sampling tightly confined n-gons might be a useful form
of “enriched sampling” in the hunt for complicated knots of low equilateral stick
number, since very entangled polygons are likely to be geometrically compact
as well.

We introduced a related probabilistic theory of nonfixed edgelength closed poly-
gons in a previous paper [16] by relating closed polygons with given total length
to Grassmann manifolds. It remains to explain the connection between that picture
and this one, and we will take up that question shortly.

APPENDIX A: EXPECTED TOTAL CURVATURE OF EQUILATERAL
CLOSED POLYGONS FOR SMALL n

In Section 3.4, we found an exact integral formula for the expectation of total
curvature for equilateral n-gons following the approach of Grosberg [30]. Gros-
berg analyzed the asymptotics of this formula for large numbers of edges, showing
that the expected total curvature approaches the asymptotic value nπ

2 + 3π
8 . We

are interested in evaluating the formula exactly for small n in order to provide a
check on our numerical methods. We used Mathematica to evaluate the formula,
obtaining the fractional expressions shown in Table 2. Grosberg’s asymptotic value
is shown in the rightmost column.

Though for space reasons it had to be truncated in the table, the exact value for
the expected total curvature of equilateral, unconfined 64-gons is

4,522,188,530,226,656,504,649,836,292,227,453,294,126,904,427,946,053,625,769,754,177,967,556,412,769,571,113,455

139,655,807,027,685,559,939,231,323,004,419,270,090,691,937,881,733,899,567,960,159,577,537,880,384,373,522,432
π

+ 288,230,376,151,711,744

491,901,992,474,628,194,486,464,288,049,342,660,789,103,293,530,486,293,575,717,158,971,541,638,355,891,307
.

APPENDIX B: PROOF OF PROPOSITION 6

In this section, we prove Proposition 6, which we restate here.

PROPOSITION 34. The polytope

Hn = {�z ∈ [−1,1]n|z1 ≥ 0, z1 + z2 ≥ 0, . . . , z1 + · · · + zn ≥ 0,−1 ≤ zi ≤ 1
}

has volume 1
2n

(2n
n

) = (2n−1)!!
n! .
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TABLE 2
The expected total curvature of equilateral n-gons computed by evaluating (13) in Mathematica for
4 ≤ n ≤ 20 and n = 32,64 (the integral becomes singular when n = 3, but all triangles have total
curvature 2π ), together with Grosberg’s asymptotic approximation. We see that for 64-gons we

need 5 significant digits to distinguish the exact value from the asymptotic approximation

n Expected total curvature Decimal Asymptotic

3 2π 6.28319 5.89049

4 8 8 7.46128

5 −2π + 9
√

3 9.30527 9.03208

6 6π − 8 10.8496 10.6029

7 316
33 π − 225

22

√
3 12.369 12.1737

8 15
4 π + 32

15 13.9143 13.7445

9 766
289 π + 11,907

2890

√
3 15.463 15.3153

10 11
2 π − 64

245 17.0175 16.8861

11 90,712
14,219 π − 1,686,177

1,990,660

√
3 18.5751 18.4569

12 331,545
51,776 π + 512

28,315 20.1351 20.0277

13 23,336,570
3,407,523 π + 2,381,643

22,716,820

√
3 21.6969 21.5984

14 877,129
118,464 π − 1024

1,282,743 23.2601 23.1692

15 3,189,814,022
403,436,289 π − 1,786,291,299

207,097,295,020

√
3 24.8244 24.74

16 241,091,487
28,701,184 π + 4096

168,339,171 26.3896 26.3108

17 197,198,281,266
22,161,558,721 π + 44,753,178,051

88,734,881,118,884

√
3 27.9554 27.8816

18 42,415,625,107
4,513,689,728 π − 8192

15,127,913,229 29.5219 29.4524

19 240,270,145,231,776
24,279,795,663,511 π − 4,277,229,018,201

194,432,603,673,396,088

√
3 31.0888 31.0232

20 111,226,176,353,241
10,700,200,165,376 π + 131,072

14,288,920,862,931 32.6561 32.594

32 262,929,167,708,231,675,164,189,486,733
16,044,875,932,324,628,104,050,900,992 π + 134,217,728

46,358,282,926,117,706,045,930,790,075 51.4816 51.4436

64 � 4.52218853×1084

1.39655807×1083 π + 2.88230376×1017

4.91901992×1080 101.7278 101.7091

Our proof is a modification of an argument originally suggested on MathOver-
flow by Johan Wästlund [74]; Bernardi, Duplantier and Nadeau [7] seem to have
had something similar in mind.

PROOF OF PROPOSITION 34. Suppose that sk(�z) = z1 + · · · + zk is the kth
partial sum of the coordinates of �z, and by convention we set s0(�z) = 0. The poly-
tope Hn can be defined as the subset of the hypercube where all sk(�z) ≥ 0. In the
remainder of the hypercube, the subset of �z where all the sk(�z) are different has
full measure: we now partition this set into a collection of n polytopes S0, . . . ,Sn

defined by

Sk := {�z ∈ [−1,1]n −Hn|the smallest si(�z) is sk(�z)}.
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We claim that VolSk = VolHk · VolHn−k for all k = 1, . . . , n − 1 and that
VolSn = VolHn. Consider the linear map

Lk :Sk ⊂ R
n →R

k ×R
n−k,

Lk(z1, . . . , zn) = (
(−zk,−zk−1, . . . ,−z1), (zk+1, . . . , zn)

)
.

It is clear that this map preserves unsigned volume. We claim the image is exactly
Hk × Hn−k . Consider the partial sums of (−zk, . . . ,−z1). The ith partial sum is
given by

si(−zk, . . . ,−z1) = −zk −zk−1 −· · ·−zk−i+1 = sk−i(z1, . . . , zn)−sk(z1, . . . , zn).

The point (−zk, . . . ,−z1) is in Hk ⇐⇒ this partial sum is positive for all
i ∈ {1, . . . , k}. But that happens exactly when sk(�z) is negative12 and the smallest
partial sum among s1(�z), . . . , sk(�z). On the other hand, if we consider the partial
sums of (zk+1, . . . , zn), we get

si(zk+1, . . . , zn) = zk+1 + · · · + zk+i = sk+i(z1, . . . , zn) − sk(z1, . . . , zn).

The point (zk+1, . . . , zn) is in Hn−k if and only if this partial sum is positive for all
i ∈ {1, . . . , n − k}. But that happens exactly when sk(�z) is the smallest partial sum
among sk(�z), . . . , sn(�z), proving the claim. When k = n, Sn is just a reversed and
negated copy of Hn itself.

We now have the relation

Vol[−1,1]n = 2n = VolHn + ∑
VolSk

(27)

= 2 VolHn +
n−1∑
k=1

VolHk VolHn−k

and we can prove the formula by induction on n.
When n = 1, the polytope H1 = [0,1] and so the formula holds. For the induc-

tive step, assume that VolHk = 1
2k

(2k
k

)
for all k < n. Then solving (27) for VolHn

yields

VolHn = 2n−1 − 1

2n+1

n−1∑
k=1

(
2k

k

)(
2(n − k)

n − k

)
.(28)

Using the Chu–Vandermonde identity
n∑

k=0

(
x

k

)(
y

n − k

)
=

(
x + y

n

)
with x = y = −1

2 and recalling that(−1
2

m

)
= (−1)m

(
2m

m

)
1

22m
and

(−1
p

)
= (−1)p

12Remember our convention that s0(�z) = 0, which is applied when i = k.
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for any positive integers m and p, we see that

n−1∑
k=1

(
2k

k

)(
2(n − k)

n − k

)
=

n∑
k=0

(
2k

k

)(
2(n − k)

n − k

)
− 2

(
2n

n

)
= 22n − 2

(
2n

n

)
.

Therefore, equation (28) simplifies to

VolHn = 1

2n

(
2n

n

)
,

as desired. �
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