PRINCIPAL ANGLES IN TERMS OF INNER PRODUCTS

CLAY SHONKWILER

1. INTRODUCTION

Suppose A and B are two k-planes in R?*. The goal of this note is to find
a “nice” way to determine the principal angles 01, ..., 0, between A and B.

This is motivated by the study of Poincaré Duality angles, which are de-
fined to be the principal angles between certain k-planes in the space of
differential p-forms on a Riemannian manifold with boundary. The details
are not relevant here, but it is clear that finding a computationally manage-
able way of determining principal angles will be relevant.

Before we get started, let’s recall the definition of the principal angles
between a k-plane and an f¢-plane in n-space. The ith principal angle 6;
between a k-plane A and an ¢-plane B is defined by the equation

(ai, b;)
[las[[[b]

cos; =

:max{ (80 b Lbym=1.2, i — 1}
lall[[ol
where the a; € A, b; € B.

In words, the procedure is to find the unit vector a; € A and the unit
vector by € B which minimize the angle between them and call this angle
#,. Now take the orthogonal complement of a; in A and the orthogonal
complement of b; in B and iterate.

In the context of Poincaré Duality angles, k = ¢, but the following proce-
dure should apply to situations where k # ¢ as well.

It is easy to check (as stated in [1] in the case k = 2) that there exists an
orthonormal basis {x1, ..., xo;} for R%* such that

{ar,. . ag} = {1, 2y}
is an orthonormal basis for A and
{B1,..., Pk} :={cosb xy +sinby xgy1,...,cos bz + sin by xop }

is an orthonormal basis for B. This is, of course, a particularly nice choice of
bases for A and B since the angle between a; and (; is exactly the principal
angle 0; for allt=1,... k.

If we already knew the bases {aq,...,ax} and {f1,..., 0} for A and B,
finding the principal angles would be trivial.

In general, though, we want to be able to determine the principal angles
given only some basis {ai,...,a;} for A and some basis {b1,...,b;} for B.
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In fact, it would be even better if we didn’t need to know exactly what the
vectors a; and b; are, only what all the possible inner products between
them are (i.e. (as;,a;), (a;,b;) and (b;,b;) for all choices of ¢ and j). The
purpose of this note is to demonstrate that we can completely determine the
principal angles between A and B given only this inner product data.

2. THE TRIVIAL CASE

We start with the case where a; = o; and b; = §; for allt =1,... k. In
other words, suppose that the bases for A and B that we start with are, by
some miracle, the bases which are already perfectly adapted to determining
the principal angles.

In this case,

cos b; = (x4, cos0; x; + sinb; xp1;) = (o, Bi),

so we need only take inner products of corresponding a’s and 3’s and we’re
done.

Geometrically what are we doing? Notice that the orthogonal projection
of 3; onto A is given by

<ﬁi, 051> a1+ ...+ (,81, Oék) o = <ﬁz, Oéi> o = cosb; o

So the principal angle 6; is really just the length of the orthogonal projection
of B; onto A. This makes it seem like the orthogonal projection map Pr :
B — A is a useful map to study.

In terms of the bases {aq,...,ar} and {f1,..., 0} for A and B, Pr can
be represented by the diagonal matrix

cos 01 0 0

0 cosfy --- 0

X = . . _ .
0 0 --- cosby

More completely, Pr is represented by the matrix
2= ((ai,ﬁj»m‘-

Note that the determinant of this matrix is

k
det X = H cos 0;.
i=1

This makes perfect sense because the determinant of ¥ should measure how
much Pr scales volume. If we consider a unit cube in B with edges given
by the 3;, then its projection to A will have edges scaled by the appropriate
cosf;. Thus, projecting the cube scales its volume by the product of the
cos 0;.

It is tempting to interpret the cos#; as the eigenvalues of Pr (with (; as
their corresponding eigenvectors), but remember that the domain and range
of Pr are different k-planes, so the 3; are only eigenvectors of Pr under the
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abstract identification of B with A via the map determined by 3; — «;. It’s
more fruitful to think of the cos#; as singular values of Pr, which implies
that the cos? §; are eigenvalues of Pr* Pr.

Pr* Pr is simply the map from B to itself given by orthogonally projecting
B to A, then orthogonally projecting A to B. It is clear that Pr*Pr3; =
cos? 03; and here it really does make sense to call the 3; eigenvectors. With
respect to the basis {31, ..., Ok}, the matrix for Pr* Pr is simply

Y = 02
3. AN ARBITRARY ORTHONORMAL BASIS

Of course, the odds that randomly selected bases for A and B coincide
with the nice bases {aq,...,ar} and {,..., Bk} are not good. We want to
be able to use arbitrary bases {a;...,ar} and {b1,...,bx} for A and B to
find the principal angles.

For the purposes of this note, let’s make the simplifying assumption that
the bases {ai,...,a;} and {b;,...,b;} are orthonormal. This is not a very
restrictive assumption because, given arbitrary bases, we can always use,
e.g., Gram-Schmidt to produce orthonormal bases. Of course, it would be
best to find a technique for determining the principal angles without needing
to invoke Gram-Schmidt, but we’ll save that problem for another day.

Given some orthonormal basis {ai,...,ax} for A, we know that there
exists some g € O(k) such that a; = g(«;) for all ¢ = 1,..., k. Similarly, if
{b1,...,bx} is an orthonormal basis for B, there exists h € O(k) such that
b = h(B;) for alli =1,...,k. (Note: it would probably be more accurate to
say that g lives in O(A) and h lives in O(B) because, though these groups
are both isomorphic to O(k), they are different groups.)

Now, we want to express Pr as a matrix in terms of the bases {a1,...,ax}
and {b1,...,br}. On one hand, since

Pr(bl) = <bl, (I1>(L1 + ...+ <bz, ak>ak,
it is clear that, in terms of these bases, the matrix for Pr is
M = ((ijai»i,j = (<aivbj>)i,j'
On the other hand, if G = (g;;), ;

basis {1, ..., a;} and H = (hij), ; is the matrix for h with respect to the
basis {f1, ..., Ok}, then

is the matrix for g with respect to the

M=GXH",
where H* is the transpose of H (remember that ¥ is the matrix for Pr in
terms of the bases {a1,...,ax} and {f1,...,Bk}).

But notice that G and H are orthogonal matrices and ¥ is a diagonal
matrix, so GX H* is a singular value decomposition for M. This confirms
the idea that the cosf; are singular values of Pr.

Of course, in practice we will have no idea what G, ¥ and H are, but we
don’t actually need them to be able to determine the cos #;. Remember that
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the cos? 6; are the eigenvalues of Pr* Pr. In terms of the basis {b1,..., b},
the matrix for Pr* Pr is

M*M =(GLSH) (GEXH")=HYX*G*GYH* = HYX* H*.

(Of course, we could have also seen this directly: since ¥2 is the matrix for
Pr* Pr with respect to the basis {f1,...,0r} and H is the change-of-basis
matrix, it must be the case that the matrix for Pr* Pr is H X2 H*.)

Since the entries of M are simply the (a;, b;),

K
M*M = Z (@m, bi)(an, bj)

m,n=1 ..
1/7]

Hence, the cos? §; can be determined purely in terms of these inner products.
Since the ; are always between 0 and 7/2 there are no ambiguities about
taking square roots or inverting the cosine, so we see that the 6; can indeed
be determined from the inner product data.

4. RANDOM REMARKS

Note that
k
(1) l_Icos2 0; = det M*M = (det M)?,
i=1

so this gives an alternate proof a result of Jiang [2] (the k = 2 case of which
appears in [1]).
Also,

k k
(2) Z:cos2 0; =tr M*M = Z (a;,bj)?,
i=1

4,j=1

the £ = 2 case of which was proved in a previous version of this note.
In the case k = 2,

N o <a1, b1>2 + <CL2, bl>2 (al, b1><a1, b2> + <a2, b1>(a2, bg>
MM = < <a1,bg><a1,b1> + <a2,b2)(a2,b1> <a1,bg>2 + <a2,b2>2 > )

The determinant of this matrix is
({a1,b1)2 + (a2, 01)?) (a1, b2)? + (a2, b2)?) —((a1, b1) (a1, ba) + (as, br){az, ba))?
= ((a1, b1)(ag, ba) — (a1, b2)(ag,b1))?

s0, by (1)

COS 91 COS 92 = <a1,bl><a2,b2) — <a1,b2>(a2,b1>.
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This, along with (2), then implies that

V(G b1) + (a2, 52)) + (a1, ba) — {a2.51)) + /(a1 b1) — (a2, 52))* + ({a,ba) + (a2, b1))°
2
V(G b1) + (a2, b)) + (a1, ba) — {a.51))> — \/((a1.b1) — (a2, b2))* + ({a,ba) + (a2, b1))°

2 Y
agreeing with the formulas found in a previous version of this note.

cosf =

cosfy =
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