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1. Introduction

Suppose A and B are two k-planes in R2k. The goal of this note is to find
a “nice” way to determine the principal angles θ1, . . . , θk between A and B.

This is motivated by the study of Poincaré Duality angles, which are de-
fined to be the principal angles between certain k-planes in the space of
differential p-forms on a Riemannian manifold with boundary. The details
are not relevant here, but it is clear that finding a computationally manage-
able way of determining principal angles will be relevant.

Before we get started, let’s recall the definition of the principal angles
between a k-plane and an `-plane in n-space. The ith principal angle θi

between a k-plane A and an `-plane B is defined by the equation

cos θi =
〈ai, bi〉
‖ai‖‖bi‖

= max
{

〈a, b〉
‖a‖‖b‖

: a⊥ am, b⊥ bm,m = 1, 2, . . . , i− 1
}

where the aj ∈ A, bj ∈ B.
In words, the procedure is to find the unit vector a1 ∈ A and the unit

vector b1 ∈ B which minimize the angle between them and call this angle
θ1. Now take the orthogonal complement of a1 in A and the orthogonal
complement of b1 in B and iterate.

In the context of Poincaré Duality angles, k = `, but the following proce-
dure should apply to situations where k 6= ` as well.

It is easy to check (as stated in [1] in the case k = 2) that there exists an
orthonormal basis {x1, . . . , x2k} for R2k such that

{α1, . . . , αk} := {x1, . . . , xk}
is an orthonormal basis for A and

{β1, . . . , βk} := {cos θ1 x1 + sin θ1 xk+1, . . . , cos θk xk + sin θk x2k}
is an orthonormal basis for B. This is, of course, a particularly nice choice of
bases for A and B since the angle between αi and βi is exactly the principal
angle θi for all i = 1, . . . , k.

If we already knew the bases {α1, . . . , αk} and {β1, . . . , βk} for A and B,
finding the principal angles would be trivial.

In general, though, we want to be able to determine the principal angles
given only some basis {a1, . . . , ak} for A and some basis {b1, . . . , bk} for B.
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In fact, it would be even better if we didn’t need to know exactly what the
vectors ai and bj are, only what all the possible inner products between
them are (i.e. 〈ai, aj〉, 〈ai, bj〉 and 〈bi, bj〉 for all choices of i and j). The
purpose of this note is to demonstrate that we can completely determine the
principal angles between A and B given only this inner product data.

2. The trivial case

We start with the case where ai = αi and bi = βi for all i = 1, . . . , k. In
other words, suppose that the bases for A and B that we start with are, by
some miracle, the bases which are already perfectly adapted to determining
the principal angles.

In this case,

cos θi = 〈xi, cos θi xi + sin θi xk+i〉 = 〈αi, βi〉,
so we need only take inner products of corresponding α’s and β’s and we’re
done.

Geometrically what are we doing? Notice that the orthogonal projection
of βi onto A is given by

〈βi, α1〉α1 + . . . + 〈βi, αk〉αk = 〈βi, αi〉αi = cos θi αi.

So the principal angle θi is really just the length of the orthogonal projection
of βi onto A. This makes it seem like the orthogonal projection map Pr :
B → A is a useful map to study.

In terms of the bases {α1, . . . , αk} and {β1, . . . , βk} for A and B, Pr can
be represented by the diagonal matrix

Σ :=


cos θ1 0 · · · 0

0 cos θ2 · · · 0
...

...
. . .

...
0 0 · · · cos θk

 .

More completely, Pr is represented by the matrix

Σ := (〈αi, βj〉)i,j .

Note that the determinant of this matrix is

det Σ =
k∏

i=1

cos θi.

This makes perfect sense because the determinant of Σ should measure how
much Pr scales volume. If we consider a unit cube in B with edges given
by the βi, then its projection to A will have edges scaled by the appropriate
cos θi. Thus, projecting the cube scales its volume by the product of the
cos θi.

It is tempting to interpret the cos θi as the eigenvalues of Pr (with βi as
their corresponding eigenvectors), but remember that the domain and range
of Pr are different k-planes, so the βi are only eigenvectors of Pr under the
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abstract identification of B with A via the map determined by βi 7→ αi. It’s
more fruitful to think of the cos θi as singular values of Pr, which implies
that the cos2 θi are eigenvalues of Pr∗ Pr.

Pr∗ Pr is simply the map from B to itself given by orthogonally projecting
B to A, then orthogonally projecting A to B. It is clear that Pr∗ Pr βi =
cos2 θβi and here it really does make sense to call the βi eigenvectors. With
respect to the basis {β1, . . . , βk}, the matrix for Pr∗ Pr is simply

Σ∗Σ = Σ2.

3. An arbitrary orthonormal basis

Of course, the odds that randomly selected bases for A and B coincide
with the nice bases {α1, . . . , αk} and {β1, . . . , βk} are not good. We want to
be able to use arbitrary bases {a1 . . . , ak} and {b1, . . . , bk} for A and B to
find the principal angles.

For the purposes of this note, let’s make the simplifying assumption that
the bases {a1, . . . , ak} and {b1, . . . , bk} are orthonormal. This is not a very
restrictive assumption because, given arbitrary bases, we can always use,
e.g., Gram-Schmidt to produce orthonormal bases. Of course, it would be
best to find a technique for determining the principal angles without needing
to invoke Gram-Schmidt, but we’ll save that problem for another day.

Given some orthonormal basis {a1, . . . , ak} for A, we know that there
exists some g ∈ O(k) such that ai = g(αi) for all i = 1, . . . , k. Similarly, if
{b1, . . . , bk} is an orthonormal basis for B, there exists h ∈ O(k) such that
bi = h(βi) for all i = 1, . . . , k. (Note: it would probably be more accurate to
say that g lives in O(A) and h lives in O(B) because, though these groups
are both isomorphic to O(k), they are different groups.)

Now, we want to express Pr as a matrix in terms of the bases {a1, . . . , ak}
and {b1, . . . , bk}. On one hand, since

Pr(bi) = 〈bi, a1〉a1 + . . . + 〈bi, ak〉ak,

it is clear that, in terms of these bases, the matrix for Pr is

M := (〈bj , ai〉)i,j = (〈ai, bj〉)i,j .

On the other hand, if G = (gij)i,j is the matrix for g with respect to the
basis {α1, . . . , αk} and H = (hij)i,j is the matrix for h with respect to the
basis {β1, . . . , βk}, then

M = G Σ H∗,

where H∗ is the transpose of H (remember that Σ is the matrix for Pr in
terms of the bases {α1, . . . , αk} and {β1, . . . , βk}).

But notice that G and H are orthogonal matrices and Σ is a diagonal
matrix, so G Σ H∗ is a singular value decomposition for M . This confirms
the idea that the cos θi are singular values of Pr.

Of course, in practice we will have no idea what G, Σ and H are, but we
don’t actually need them to be able to determine the cos θi. Remember that
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the cos2 θi are the eigenvalues of Pr∗ Pr. In terms of the basis {b1, . . . , bk},
the matrix for Pr∗ Pr is

M∗M = (G Σ H∗)∗ (G Σ H∗) = H Σ∗ G∗ G Σ H∗ = H Σ2 H∗.

(Of course, we could have also seen this directly: since Σ2 is the matrix for
Pr∗ Pr with respect to the basis {β1, . . . , βk} and H is the change-of-basis
matrix, it must be the case that the matrix for Pr∗ Pr is H Σ2 H∗.)

Since the entries of M are simply the 〈ai, bj〉,

M∗M =

 k∑
m,n=1

〈am, bi〉〈an, bj〉


i,j

.

Hence, the cos2 θi can be determined purely in terms of these inner products.
Since the θi are always between 0 and π/2 there are no ambiguities about
taking square roots or inverting the cosine, so we see that the θi can indeed
be determined from the inner product data.

4. Random Remarks

Note that

(1)
k∏

i=1

cos2 θi = detM∗M = (det M)2 ,

so this gives an alternate proof a result of Jiang [2] (the k = 2 case of which
appears in [1]).

Also,

(2)
k∑

i=1

cos2 θi = tr M∗M =
k∑

i,j=1

〈ai, bj〉2,

the k = 2 case of which was proved in a previous version of this note.
In the case k = 2,

M∗M =
(

〈a1, b1〉2 + 〈a2, b1〉2 〈a1, b1〉〈a1, b2〉+ 〈a2, b1〉〈a2, b2〉
〈a1, b2〉〈a1, b1〉+ 〈a2, b2〉〈a2, b1〉 〈a1, b2〉2 + 〈a2, b2〉2

)
.

The determinant of this matrix is(
〈a1, b1〉2 + 〈a2, b1〉2

) (
〈a1, b2〉2 + 〈a2, b2〉2

)
−(〈a1, b1〉〈a1, b2〉+ 〈a2, b1〉〈a2, b2〉)2

= (〈a1, b1〉〈a2, b2〉 − 〈a1, b2〉〈a2, b1〉)2

so, by (1)

cos θ1 cos θ2 = 〈a1, b1〉〈a2, b2〉 − 〈a1, b2〉〈a2, b1〉.
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This, along with (2), then implies that

cos θ1 =

√
(〈a1, b1〉+ 〈a2, b2〉)2 + (〈a1, b2〉 − 〈a2, b1〉)2 +

√
(〈a1, b1〉 − 〈a2, b2〉)2 + (〈a1, b2〉+ 〈a2, b1〉)2

2

cos θ2 =

√
(〈a1, b1〉+ 〈a2, b2〉)2 + (〈a1, b2〉 − 〈a2, b1〉)2 −

√
(〈a1, b1〉 − 〈a2, b2〉)2 + (〈a1, b2〉+ 〈a2, b1〉)2

2
,

agreeing with the formulas found in a previous version of this note.
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