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Show that a compact orientable manifold of dimension 4n + 2 has even
Euler characteristic. What can you say for other dimensions?

Proof. First, note that, since H i(M) ' Hi(M) ⊕ Ti−i, where Ti−1 denotes
the torsion in Hi−1(M), the free rank of H i(M) is equal to the free rank of
Hi(M). If we denote the free rank of Hi(M) by rk Hi(M), then

χ(M) =
4n+2∑
i=0

rk Hi(M).

Now, since M is compact and orientable, we know, by Poincaré Duality,
that H i(M) ' H4n+2−i(M) and, hence, that rk Hi(M) = rk H i(M) =
rk H4n+2−i(M). Therefore,

χ(M) =
4n+2∑
i=0

rk (−1)iHi(M) = rk H2n+1(M) + 2
2n∑
i=0

rk Hi(M).

2
∑

rk Hi(M) is certainly even, so the parity of χ(M) is equal to the parity
of rk H2n+1(M) = rk H2n+1(M).

Consider the pairing

P : H2n+1(M)×H2n+1(M) → H4n+2(M)

given by
(α, β) 7→ α ∪ β.

Since all we care about is the free rank ofH2n+1, we may as well consider this
in cohomology with real coefficients where there is no torsion and, thus, this
is a well-defined, non-degenerate pairing. Since H2n+1(M) is of odd grade
in H∗(M), α∪α = 0 for all α ∈ H2n+1(M) and α∪β = −β∪α for all α, β ∈
H2n+1(M). Now, since M is compact and orientable, H4n+2(M,R) ' R and
since there is no torsion with real coefficients, H2n+1(M,R) ' Rk where
k = rk H2n+1(M). Hence, P simply defines an antisymmetric, bilinear
form φ : Rk × Rk → R, which is to say, a vector space homomorphism
Φ : Rk ⊗ Rk → R. Hence, we can represent the map Φ with a non-singular
k × k matrix A such that A = −At. Hence,

detA = det−At = (−1)k detA,
1
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so, since detA 6= 0, (−1)k = 1. Therefore, k is even, which implies that
rk H2n+1(M) is even and, hence, χ(M) is even.

Now, in other dimensions we can say some things. If M has dimen-
sion 2n + 1, then our above argument about free ranks of the homology
groups still holds, so rk Hi(M) = rk H2n+1−i(M), and hence, since (−1)i

and (−1)2n+1−i have opposite parities,

χ(M) =
2n+1∑
i=0

(−1)irk Hi(M) = 0.

Finally, ifM has dimension 4n, the we can’t say anything in general about
the Euler characteristic. Even when n = 1, we have the examples

χ(S4) = 2, χ(CP2) = 1 + 1 + 1 = 3.

�

2

You can now complete the problem about the cohomology of the con-
nected sum of two n-dimensional manifolds. You only need to discuss the
cases that you could not do before, i.e. in dimensions n and n− 1. You can
assume that they are compact, but not that they are orientable.

Answer: There are a few different cases to consider. If M and N are two
compact n-dimensional manifolds, then we could have both orientable, only
one orientable, or neither orientable. Now, if both M and N are orientable,
then M#N is also orientable, so Hn(M#N,Z) = Z = Hn(M) = Hn(N).
If either M or N is non-orientable (or both), then M#N is non-orientable,
so Hn(M#N) = Z/2. Now, as before, we have the following piece of the
exact sequence derived from Mayer-Vietoris:
(1)
Hn−2(Sn−1) // Hn−1(M#N) // Hn−1(M − {p})⊕Hn−1(N − {q}) // Hn−1(Sn−1)

��
0 = Hn(Sn−1) Hn(M − {p})⊕Hn(N − {q})oo Hn(M#N)oo

where p ∈ M and q ∈ N . Since M − {p} and N − {q} are not compact,
Hn(M − {p}) = Hn(N − {q}) = 0. Also, the proof given in PS5#5 demon-
strates that Hn−1(M − {p}) = Hn−1(M) for all compact, orientable M .
Note also that Hn−1(Sn−1) = Z. Hence, if M and N are both orientable,
(1) reduces to

0 → Hn−1(M#N) → Hn−1(M)⊕Hn−1(N) → Z → Z → 0.

Since ker Z → 0 is all of Z, the image of Z → Z is all of Z, so Z → Z must
be injective, meaning the image of the map into Z is zero. Thus, we can
further reduce to

0 → Hn−1(M#N) → Hn−1(M)⊕Hn−1(N) → 0.
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Since this sequence splits, we see that, for M and N compact and orientable,

Hn−1(M#N) ' Hn−1(M)⊕Hn−1(N).

On the other hand, if M is a compact, non-orientable manifold, then,
again using the same argument as in PS5#5, Hn−1(M) ' Hn−1(M−{p})⊕
Z. Therefore, if one of M and N is orientable and the other is not, then (1)
reduces to

0 → Hn−1(M#N) → Hn−1(M)⊕Hn−1(N)⊕ Z → Z → Z/2 → 0.

Since this sequence is exact, Z → Z/2 must be surjective; hence, the kernel
of this map must be 2Z ' Z as a group. Therefore, the middle term surjects
onto 2Z; this will account for one copy of Z in this middle term (of which
there is obviously at least one), so the kernel of this map will simply be
Hn−1(M)⊕Hn−1(N). Since Hn−1(M#N) must inject onto this kernel, we
see immediately that

Hn−1(M#N) ' Hn−1(M)⊕Hn−1(N).

Finally, suppose both M and N are non-orientable. Then, (1) reduces to

0 → Hn−1(M#N) → Hn−1(M)⊕Hn−1(N)⊕ Z⊕ Z → Z → Z/2 → 0.

Again, the kernel of Z → Z/2 is 2Z, which must also be the image of the
middle term. This accounts for one of the Z terms in the middle term (again,
this might not be one of the Z’s that appears explicitly in the middle term;
it might come from one of the other summands). Hence, Hn−1(M#N)
surjects onto the kernel, which must be isomorphic toi

Hn−1(M)⊕Hn−1(N)⊕ Z.
Since Hn−1(M#N) must also inject into this kernel, we conclude that

Hn−1(M#N) ' Hn−1(M)⊕Hn−1(N)⊕ Z
when M and N are both non-orientable.

♣

3

Let D act properly discontinuously on a topological oriented manifold M .
Define what it means for the group action to be orientation-preserving, and
show that the quotient is orientable. Indicate how the orientation homomor-
phism O : π1(M) → Z/2 we discussed earlier for differentiable manifolds also
works for topological manifolds.

Proof. First, recall the definition of an orientation on a topological manifold;
that is, that there exists a map φ : M →

⊔
p∈M Hn(M,M − {p}) such that

p 7→ αp

where αp is a generator of Hn(M,M−{p}) and, for each p ∈M , there exists
a neighborhood U of p homeomorphic to Rn such that there is an αU ∈
Hn(M,M − U) that maps to αp under the natural map i∗ : Hn(M,MU ) →
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Hn(M,M − {p}) induced by the inclusion. First, note that, for g ∈ D, the
map Lg : M →M given by Lg(p) = g ·p induces a map Lg : (M,M−{p}) →
(M,M − {g · p}) and, hence, a homomorphism

(Lg)∗ : Hn(M,M − {p}) → Hn(M,M − {g · p}).
Then we will say that the action of D is orientation-preserving if the follow-
ing diagram commutes for all g ∈ D and all p ∈M :

Hn(M,M − {p})
(Lg)∗// Hn(M,M − {g · p})

M

φ

OO

Lg // M

φ

OO

That is, that (Lg)∗ ◦ φ = φ ◦ Lg. Now, suppose the action of D is indeed
orientation-preserving. Then we know, since D acts properly discontinu-
ously, that M/D is a manifold. Let π : M → M/D be the quotient map.
Define ψ : M/D →

⊔
p̄∈M/D Hn(M,M − {p}) by

p̄ 7→ π∗ ◦ φ(p)

where π(p) = p̄ ∈ M/D. Since the action of D is orientation-preserving, ψ
is well-defined, since, if p, p′ ∈ π−1(p̄), p′ = g · p = Lg(p) for some g ∈ D.
Also, since π is the quotient map, π = π ◦ Lg. Hence,

(π∗◦φ)(p′) = (π∗◦φ◦Lg)(p) = (π∗◦(Lg)∗◦φ)(p) = (π◦Lg)∗(φ(p)) = (π∗◦φ)(p).

Now, since D acts properly discontinuously, M/D looks locally exactly like
M , so π∗ : Hn(M,M − {p}) → Hn(M/D,M/D − {π(p)}) is an isomor-
phism taking the generator αp ∈ Hn(M,M − {p}) to the generator απ(p)

of Hn(M/D,M/D − {π(p)}). Hence, ψ really does map p̄ to αp̄ for each
p̄ ∈M/D. Finally, for p̄ ∈M/D, there exists a neighborhood V ′ of p̄ that is
homeomorphic to a neighborhood V of p for each p ∈ π−1(p). Hence, if U is
the neighborhood of p homeomorphic to Rn such that the generator αU in
Hn(M,M−U) maps to αq for each q ∈ U , then, for each q̄ ∈ π(U∩V ) =: U ′,
αU ′ 7→ αq. Therefore, ψ really does define an orientation on M/D, so M/D
is orientable.

Now, to define the orientation homomorphism, we use the same procedure
we used to define it for differentiable manifolds. If γp is a closed loop based
at p ∈M , then, for each point q on γp, there exists a neighborhood Uq of q
such that Uq is homeomorphic to Rn, which is orientable, so there exists an
orientation φq on Uq. The collection {Uq}q∈γp defines an open cover of γp,
so we can take a finite subcover, {U0, . . . , Un}, where p ∈ U0 and p ∈ Un.
Now, take the orientation φ0 on U0; U0 ∩ U1 6= ∅; for q ∈ U0 ∩ U1, either
φ0(q) = φ1(q) or φ0(q) = −φ1(q). If the former, let φ′1 = φ1 and if the
latter, let φ′1 = −φ1. Then φ′1 defines an orientation on U1 that agrees with
φ0 on U0 ∩ U1. Iterating this process, we see that we can define φ′k for each
k = 1, . . . , n such that φ′k agrees with φ′j on Uk ∩ Uj when the intersection
is non-empty.
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Since U0∩Un 3 p, φ0 and φ′n define orientations on U0∩Un; if they agree,
then we say that the loop γp is orientation-preserving. If they disagree, we
say that they are orientation-reversing. Just as in the differentiable case, this
property will be invariant under homotopies, so the notion of orientation-
preserving or -reversing is well-defined on homotopy classes. Hence, we
define O : π1(M) → Z/2 by

[γ] 7→

{
0 γ is orientation-preserving
1 γ is orientation-reversing

This map will be a homomorphism by the identical argument given in the
differentiable case, and we again have the result that O is trivial if and only
if M is orientable. �

4

Show that if a topological manifold in Z/p orientable with p 6= 2 a prime,
then M is also Z orientable.

Proof. We generalize the notion of the two-sheeted orientable cover in the
following way: let

M̃R = {αx|x ∈M and αx a generator of Hn(M,M − {x};R)}.

The map αx 7→ x is certainly a surjection from M̃R to M . Now, to make M̃R

a covering space, we put a topology on it by taking, for each neighborhood
B homeomorphic to Rn and each generator αB of Hn(M,M −B;R), the set
B̃(αB) consisting of all αx ∈ M̃R such that x ∈ B and αx = i∗(αB) where
i : (M,M − B) → (M,M − {x}) is the usual inclusion. Then these B̃(αB)
form a basis for a topology on M̃R and, under this topology, M̃R → M is
a covering map (here we follow the construction in Hatcher, pp. 234-235).
This is an m-sheeted covering, where m is the order of R∗, where R∗ is the
group of units of R.

Now, Hn(M,M − {x};R) ' Hn(M,M − {x}; Z) ⊗ R by universal coef-
ficients, since Hn−1 = 0 (since (M,M − {x}) has the same homology as a
sphere). Hence, we can identify elements of Hn(M,M −{x};R), which is to
say elements of M̃R, by αx ⊗ r where αx is a Z-orientation at x and r ∈ R∗.
Then, for each r ∈ R∗, the subspace

M̃r = {±αx ⊗ r|αx ∈ M̃Z}

is also a covering of M . Now, if r 6= −r (that is, 2r 6= 0), then M̃r will simply
be a copy of the usual orientable double cover, M̃Z, whereas if r = −r, then
M̃r is just a copy of M .

If R = Z/p, then, since every non-zero element of Z/p is a unit, a Z/p-
orientation ofM corresponds to a global section of M̃Z/p →M . Since r 6= −r
for any r ∈ Z/p∗, M̃r is just M̃Z for each r ∈ Z/p∗ and so a global section
of M̃Z/p can only exist if there is a global section of M̃Z → M . However,
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such a global section of M̃Z → M constitutes precisely a Z-orientation on
M , so if M is not Z-orientable, it cannot be Z/p-orientable. Therefore, by
contrapositive, if M is Z/p-orientable, then M is Z-orientable. �
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