GEOMETRY HW 11

CLAY SHONKWILER

1

Show that a compact orientable manifold of dimension 4n + 2 has even
Fuler characteristic. What can you say for other dimensions?

Proof. First, note that, since H'(M) ~ HZ(M) @ T;_;, where T;_1 denotes
the torsion in H,;_1(M), the free rank of H*(M) is equal to the free rank of
H;(M). If we denote the free rank of H;(M) by rk H;(M), then

in+2
N(M) = 3 1k Hy(M).
i=0
Now, since M is compact and orientable, we know, by Poincaré Duality,
that H (M) ~ Hynio (M) and, hence, that vk H;(M) = tk H{(M) =
rk Hypo—;(M). Therefore,

An+2 2n
(M) = i rk (—1)"H;(M) =tk H*"" (M) +2) 1k Hy(M).
=0 =0

2> rk H;(M) is certainly even, so the parity of x(M) is equal to the parity
of tk Hopy1(M) =tk H?"H1(M).
Consider the pairing

P . H2n+1 (M) X H2n+1(M) N H4n+2(M)

given by
(o, B) — aUB.

Since all we care about is the free rank of H?"*!, we may as well consider this
in cohomology with real coefficients where there is no torsion and, thus, this
is a well-defined, non-degenerate pairing. Since H?"*!(M) is of odd grade
in H*(M), aUa = 0 for all @« € H*"*1(M) and aUB = —FUa for all a, 3 €
H?"F1(M). Now, since M is compact and orientable, H*"*2(M,R) ~ R and
since there is no torsion with real coefficients, H*"*1(M,R) ~ R¥ where
k = rk H>"*1(M). Hence, P simply defines an antisymmetric, bilinear
form ¢ : R¥ x R¥ — R, which is to say, a vector space homomorphism
® : R¥ ® R¥ — R. Hence, we can represent the map ® with a non-singular
k x k matrix A such that A = —A!. Hence,

det A = det —A' = (—1)F det A,
1
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so, since det A # 0, (—1)¥ = 1. Therefore, k is even, which implies that
rk H*"*1(M) is even and, hence, x(M) is even.

Now, in other dimensions we can say some things. If M has dimen-
sion 2n + 1, then our above argument about free ranks of the homology
groups still holds, so rk H;(M) = rk Ha,y1_;(M), and hence, since (—1)°
and (—1)2"+1=% have opposite parities,

2n+1
(M) = 3 (~1)ixk Hi(M) = 0.
i=0

Finally, if M has dimension 4n, the we can’t say anything in general about
the Euler characteristic. Even when n = 1, we have the examples

x(8H =2, x(CP*)=1+1+4+1=3.

2

You can now complete the problem about the cohomology of the con-
nected sum of two n-dimensional manifolds. You only need to discuss the
cases that you could not do before, i.e. in dimensions n and n — 1. You can
assume that they are compact, but not that they are orientable.

Answer: There are a few different cases to consider. If M and N are two
compact n-dimensional manifolds, then we could have both orientable, only
one orientable, or neither orientable. Now, if both M and IV are orientable,
then M#N is also orientable, so H"(M#N,7Z) = Z = H"(M) = H"(N).
If either M or N is non-orientable (or both), then M#N is non-orientable,
so H"(M+#N) = 7Z/2. Now, as before, we have the following piece of the
exact sequence derived from Mayer-Vietoris:

(1)
H = 2(S"Y) —— H" " H(M#N) —— H"" Y (M — {p}) ® H" '(N — {¢}) —= H"'(S"™)

|

0=H"(S"1)<——H"(M - {p}) ® H"(N — {q}) <—— H"(M#N)

where p € M and ¢ € N. Since M — {p} and N — {q} are not compact,
H"(M — {p}) = H"(N — {q}) = 0. Also, the proof given in PS5#5 demon-
strates that H" Y(M — {p}) = H" Y(M) for all compact, orientable M.
Note also that H"~1(S"~1) = Z. Hence, if M and N are both orientable,
(1) reduces to

0— H" Y M#N)— H" Y (M)e H"Y(N) -Z — Z — 0.

Since ker Z — 0 is all of Z, the image of Z — Z is all of Z, so Z — Z must
be injective, meaning the image of the map into Z is zero. Thus, we can
further reduce to

0— H" Y (M#N) — H"Y(M)3 H"(N) — 0.
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Since this sequence splits, we see that, for M and N compact and orientable,
H" " Y (M#N) ~ H" Y (M) ® HY(N).

On the other hand, if M is a compact, non-orientable manifold, then,
again using the same argument as in PS5#5, H"~1(M) ~ H"1(M — {p})®
Z. Therefore, if one of M and N is orientable and the other is not, then (1)
reduces to

0— H" ' (M#N) - H" ' M)e H" ' (N)®@Z - Z — Z/2 — 0.

Since this sequence is exact, Z — 7Z/2 must be surjective; hence, the kernel
of this map must be 2Z ~ Z as a group. Therefore, the middle term surjects
onto 2Z; this will account for one copy of Z in this middle term (of which
there is obviously at least one), so the kernel of this map will simply be
H" Y (M)@® H" 1(N). Since H" !(M#N) must inject onto this kernel, we
see immediately that

H" " Y (M#N) ~ H" Y (M) ® H"Y(N).

Finally, suppose both M and N are non-orientable. Then, (1) reduces to
0— H" ' (M#N) - H" ' M)e H" ' (N)®@Z®Z —~Z — 7)2 — 0.
Again, the kernel of Z — Z/2 is 27, which must also be the image of the
middle term. This accounts for one of the Z terms in the middle term (again,
this might not be one of the Z’s that appears explicitly in the middle term;
it might come from one of the other summands). Hence, H" 1(M#N)

surjects onto the kernel, which must be isomorphic toi
H" Y M)® H"Y(N) @ Z.
Since H"~1(M#N) must also inject into this kernel, we conclude that
H" Y M#N)~H" Y (M) H"YN)® Z

when M and N are both non-orientable.

3

Let D act properly discontinuously on a topological oriented manifold M.
Define what it means for the group action to be orientation-preserving, and
show that the quotient is orientable. Indicate how the orientation homomor-
phism O : w1 (M) — Z/2 we discussed earlier for differentiable manifolds also
works for topological manifolds.

Proof. First, recall the definition of an orientation on a topological manifold;
that is, that there exists a map ¢ : M — |_|peM H, (M, M — {p}) such that
pr=op

where «, is a generator of H,, (M, M —{p}) and, for each p € M, there exists
a neighborhood U of p homeomorphic to R™ such that there is an ay €
H,(M,M — U) that maps to oy, under the natural map i, : H,(M, My) —
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H,(M, M — {p}) induced by the inclusion. First, note that, for g € D, the
map Ly : M — M given by Ly(p) = g-p induces a map Ly : (M, M —{p}) —
(M, M — {g - p}) and, hence, a homomorphism

(Lg)s : Ho(M, M —{p}) — Hn(M, M —{g - p}).

Then we will say that the action of D is orientation-preserving if the follow-
ing diagram commutes for all g € D and all p € M:

Ho(M, M — {p}) 2% H, (M, M ~ {g-p})

PR

M M

That is, that (Lg)« o ¢ = ¢ o Ly. Now, suppose the action of D is indeed
orientation-preserving. Then we know, since D acts properly discontinu-
ously, that M/D is a manifold. Let 7 : M — M/D be the quotient map.
Define ¢ : M/D — | 5cp/p Hn(M, M — {p}) by

P 0 ¢(p)

where m(p) = p € M/D. Since the action of D is orientation-preserving,
is well-defined, since, if p,p’ € 7=1(p), p' = g-p = Ly(p) for some g € D.
Also, since 7 is the quotient map, m = m o L,. Hence,

(m:08)(p') = (miogoLy)(p) = (mro(Lg)«00)(p) = (ToLg)+(6(p)) = (m09)(p).
Now, since D acts properly discontinuously, M /D looks locally exactly like
M, so 7. : Hy(M,M — {p}) — H,(M/D,M/D — {x(p)}) is an isomor-
phism taking the generator o, € H, (M, M — {p}) to the generator ay(,
of H,(M/D,M/D — {m(p)}). Hence, 1 really does map p to oy for each
p € M/D. Finally, for p € M/D, there exists a neighborhood V' of p that is
homeomorphic to a neighborhood V' of p for each p € 7=1(p). Hence, if U is
the neighborhood of p homeomorphic to R™ such that the generator ag in
H,, (M, M —U) maps to aq for each ¢ € U, then, for each g € m(UNV) =: U,
ayr +— ag. Therefore, 9 really does define an orientation on M /D, so M /D
is orientable.

Now, to define the orientation homomorphism, we use the same procedure
we used to define it for differentiable manifolds. If v, is a closed loop based
at p € M, then, for each point g on ~,, there exists a neighborhood Uy of ¢
such that U, is homeomorphic to R", which is orientable, so there exists an
orientation ¢, on Uy. The collection {U,},e,, defines an open cover of ~,,
so we can take a finite subcover, {Uy,...,U,}, where p € Uy and p € U,,.
Now, take the orientation ¢g on Uy; Uy N Uy # 0; for ¢ € Uy N Uy, either
do(q) = ¢1(q) or ¢o(q) = —¢1(q). If the former, let ¢} = ¢1 and if the
latter, let ¢) = —¢1. Then ¢} defines an orientation on U; that agrees with
¢o on Uy NU;. Iterating this process, we see that we can define ¢}, for each
k=1,...,n such that ¢ agrees with ¢/ on Uy N U; when the intersection
is non-empty.
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Since UgNU, 3 p, ¢o and ¢, define orientations on Uy NU,; if they agree,
then we say that the loop -, is orientation-preserving. If they disagree, we
say that they are orientation-reversing. Just as in the differentiable case, this
property will be invariant under homotopies, so the notion of orientation-
preserving or -reversing is well-defined on homotopy classes. Hence, we

define O : m (M) — Z/2 by
0 is orientation-preserving
[v]

1 « is orientation-reversing

This map will be a homomorphism by the identical argument given in the
differentiable case, and we again have the result that O is trivial if and only
if M is orientable. O

4

Show that if a topological manifold in Z/p orientable with p # 2 a prime,
then M is also Z orientable.

Proof. We generalize the notion of the two-sheeted orientable cover in the
following way: let

Mg = {az|z € M and a, a generator of H,(M,M — {z}; R)}.

The map a, — x is certainly a surjection from Mg to M. Now, to make Mg
a covering space, we put a topology on it by taking, for each neighborhood
B homeomorphic to R™ and each generator ag of H,(M, M — B; R), the set
é(aB) consisting of all o, € Mp such that € B and «, = i.(ap) where
i:(M,M — B) — (M, M — {z}) is the usual inclusion. Then these B(ag)
form a basis for a topology on Mg and, under this topology, Mr — M is
a covering map (here we follow the construction in Hatcher, pp. 234-235).
This is an m-sheeted covering, where m is the order of R*, where R* is the
group of units of R.

Now, H,(M,M — {z}; R) ~ H,(M,M — {z};Z) ® R by universal coef-
ficients, since H,,—1 = 0 (since (M, M — {z}) has the same homology as a
sphere). Hence, we can identify elements of H, (M, M — {x}; R), which is to
say elements of M, R, by a; ® r where a is a Z-orientation at z and r € R*.
Then, for each r € R*, the subspace

Mr ={ta, ®@r|a, € MZ}

is also a covering of M. Now, if r # —r (that is, 2r # 0), then M, will simply
be a copy of the usual orientable double cover, MZ, whereas if r = —r, then
Mr is just a copy of M.

If R = 7Z/p, then, since every non-zero element of Z/p is a unit, a Z/p-
orientation of M corresponds to a global section of MZ /p — M. Sincer # —r
for any r € Z/p*, M, is just My, for each r € Z/p* and so a global section
of MZ /p can only exist if there is a global section of MZ — M. However,
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such a global section of MZ — M constitutes precisely a Z-orientation on
M, so if M is not Z-orientable, it cannot be Z/p-orientable. Therefore, by
contrapositive, if M is Z/p-orientable, then M is Z-orientable. [l
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