
ALGEBRA HW 6

CLAY SHONKWILER

547.4

Prove that Q(
√

2) and Q(
√

3) ar not isomorphic.

Proof. Suppose there exists an isomorphism φ : Q(
√

2) → Q(
√

3). Then, of
course, it must be the case that φ(1) = 1. Hence

2 = 1+1 = φ(1)+φ(1) = φ(1+1) = φ(2) = φ(
√

2
√

2) = φ(
√

2)φ(
√

2) = (φ(
√

2))2.

In other words, φ(
√

2) = ±
√

2. However, as we saw on the last homework
(problem 8, page 510), since 2 · 3 = 6 is not a square in Q, Q(

√
2,
√

3) is an
extension of degree 4 over Q and hence of degree 2 over Q(

√
3). In other

words, ±
√

2 /∈ Q(
√

3). Therefore, we see that there is no such isomorphism
φ and so Q(

√
2) and Q(

√
3) cannot be isomporphic. �

547.6

Let k be a field
(a) Show that the mapping φ : k[t] → k[t] defined by φ(f(t)) = f(at + b)

for fixed a, b ∈ k, a 6= 0 is an automorphism of k[t] which is the identity on
k.

Proof. Let f(t), g(t) ∈ k[t]. Then

φ((f + g)(t)) = (f + g)(at + b) = f(at + b) + g(at + b) = φ(f(t)) + φ(g(t))

and

φ((fg)(t)) = (fg)(at + b) = f(at + b)g(at + b) = φ(f(t))φ(g(t)),

so φ is a homomorphism. Now, suppose φ(f(t)) = φ(g(t)). Then

f(at + b) = g(at + b);

if we let s = at + b, then we see that f(s) = g(s) in k[s] = k[t], so φ is
injective.

Now, let g(t) ∈ k[t]. Define

f(t) = g(t/a− b/a).

Then

φ(f(t)) = f(at + b) = g(a(t/a− b/a) + b) = g(t− b + b) = g(t),
1
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so φ is surjective. Therefore, we conclude that φ is an automorphism of k[t].
Now, if c ∈ k ⊂ k[t], then

φ(c) = c

so φ is the identity on k. �

(b) Conversely, let φ be an automorphism of k[t] which is the identity on
k. Prove that there exist a, b ∈ k with a 6= 0 such that φ(f(t)) = f(at + b)
as in (a).

Proof. Since φ is the identity on k, it cannot be of the form

φ(f(t)) = h(t)f(t) + g(t)

for any h, g ∈ k[t]. Hence, it must be the case that

φ(f(t)) = f(g(t))

for some g(t) ∈ k[t]. Now, suppose the degree n of g is greater than one.
Then elements in the image of φ must have degree divisible by n. However,
if this were the case, it’s clear that φ could not be surjective. Hence, we
see that deg(g(t)) ≤ 1. If deg(g(t)) = 0, then g(t) = b for some b ∈ k.
Hence, φ(f(t)) = f(b) is just a constant term for all f ∈ k[t]. Therefore, we
conclude that it must be the case that deg(g(t)) = 1, meaning g(t) = at + b
where a, b ∈ k and a 6= 0. �

547.7

This exercise determines Aut(R/Q).
(a) Prove that any σ ∈ Aut(R/Q) takes squares to squares and takes

positive reals to positive reals. Conclude that a < b implies that σa < σb
for every a, b ∈ R.

Proof. Let σ ∈ Aut(R/Q) and let a = b2 be a square in R. Then

σa = σ(b2) = σbσb = (σb)2,

which is also a square in R. Now, since every non-negative element of R is
a square and no negative elements are, and it must be true that σ0 = 0, we
see that it must be the case that σ takes positive reals to positive reals.

Now, let a, b ∈ R such that a < b. Then there exists some r ∈ Q such
that

a < r < b.

Let δ = r − a and let γ = b− r. Note that δ and γ are both positive, even
though a, r and b need not be. Then since σ is the identity on Q and takes
positive reals to positive reals, we see that

r = σ(r) = σ(r − a + a) = σ(r − a) + σ(a) = σ(δ) + σ(a) > σ(a),
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since σ(δ) > 0. Similarly,

r = σ(r) = σ(r − b + b) = σ(r − b) + σ(b)
= σ(−γ) + σ(b)
= σ(−1)σ(γ) + σ(b)
= −σ(γ) + σ(b)
< σ(b),

since σ(−1) = −1 and σ(γ) > 0. Therefore, combining the above two results,
we see that

σ(a) < r < σ(b).

�

(b) Prove that −1
m < a−b < 1

m implies −1
m < σa−σb < 1

m fr every positive
integer m. Conclude that σ is a continuous map on R.

Proof. Suppose a, b ∈ R such that

−1
m

< a− b <
1
m

.

Adding b to all terms, this implies that

b− 1
m

< a < b +
1
m

.

By our result in part (a), then, we know that

σb− 1
m

= σb−σ(
1
m

) = σ(b− 1
m

< σa < σ(b +
1
m

) = σb + σ(
1
m

) = σb +
1
m

.

Subtracting σb from all terms, then, we see that

− 1
m

< σa− σb <
1
m

.

Therefore, if ε > 0, there exists a δ > 0 (namely any fraction of the form
1
m < ε), such that, if |a− b| < δ,

|a− b| < δ < ε,

so σ is continuous on R. �

(c) Prove that any continuous map on R which is the identity on Q is the
identity map, hence Aut(R/Q) = 1.

Proof. Let f be a continuous map on R which is the identity on Q, let
b ∈ R and let ε > 0. Since f is continuous, there exists γ > 0 such that, if
|b− a| < γ,

|f(b)− f(a)| < ε/2.
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Let δ = min{ε/2, γ}. Let a ∈ Q such that |b− a| < δ. Then

|b− f(b)| = |b− a + a− f(b)|
≤ |b− a|+ |a− f(b)|
= |b− a|+ |f(a)− f(b)|
= |b− a|+ |f(b)− f(a)|
< δ + ε/2
≤ ε/2 + ε/2
= ε.

In other words, f(b) = b. Since our choice of b was arbitrary, we conclude
that, in fact, f is the identity on all of R. Hence, the identity map is the
only element of Aut(R/Q), so

Aut(R/Q) = 1.

�

547.8

Prove that the automorphisms of the rational function field k(t) which fix
k are precisely the fractional linear transformations determined by t 7→ at+b

ct+d
for a, b, c, d ∈ k, ad− bc 6= 0.

Proof. First, suppose φ is a map from k(t) to itself such that, for f(t) ∈ k(t),

φ(f(t)) = f

(
at + b

ct + d

)
.

Now, suppose φ(g(t)) = φ(f(t)) for some f(t), g(t) ∈ k(t). Then

g

(
at + b

ct + d

)
= f

(
at + b

ct + d

)
.

Therefore, g ≡ f in k
(

at+b
ct+d

)
. Now, by the work we did in the last homework

(Problem 18, Section 13.2), we know that[
k(t) : k

(
at + b

ct + d

)]
= max(deg(at + b),deg(ct + d)) = 1,

so k
(

at+b
ct+d

)
= k(t), and so we see that g ≡ f in k(t). Hence, φ is injective.

Now, since

Im(φ) = k

(
at + b

ct + d

)
and, as we just saw, k

(
at+b
ct+d

)
= k(t), φ must be surjective.

Now, if f, g ∈ k(t), then

φ((f+g)(t)) = (f+g)
(

at + b

ct + d

)
= f

(
at + b

ct + d

)
+g

(
at + b

ct + d

)
= φ(f(t))+φ(g(t))
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and

φ((fg)(t)) = (fg)
(

at + b

ct + d

)
= f

(
at + b

ct + d

)
g

(
at + b

ct + d

)
= φ(f(t))φ(g(t)).

Therefore, φ is a homomorphism. Since it is bijective, we see that φ is an
automorphism. Therefore, all maps of the given form are automorphisms of
k(t). Furthermore, these maps fix any constant functions (i.e., elements of
k), so we see that all such maps are automorphisms of k(t) which fix k.

On the other hand, suppose γ is an automorphism of k(t) which fixes k.
Then, in principle, it could be the case that, for f ∈ k(t),

γ(f(t)) = g(f(h(t))),

where g, h ∈ k(t). However, since γ must fix elements of k, we see that g
can only be the identity. In other words,

γ(f(t)) = f(h(t))

where h(t) = P (t)
Q(t) where P and Q are relatively prime polynomials over k.

Note that

Im(γ) = k(h(t)) = k

(
P (t)
Q(t)

)
.

Now, again by the work we did last week on Problem 18, Section 13.2, we
know that

[k(t) : k(h(t))] = max(deg(P (t)),deg(Q(t))).

However, since γ is an automorphism, it must be the case that Im(γ) = k(t),
which is to say tht

[k(t) : k(h(t))] = 1.

Hence, we see that both P and Q must be of degree ≤ 1. Hence, P (t) = at+b
and Q(t) = ct + d for some a, b, c, d ∈ k. The relative primeness of P and
Q means that, if c 6= 0, it cannot be the case that ad

c = b (else it would be
true that a

c (ct + d) = at + b) and, if c = 0, it cannot be the case that a = 0.
Re-arranging, we see that this implies that

ad 6= bc or ad− bc 6= 0.

Having shown that all automorphisms of k(t) fixing k are fractional linear
transformations and all fractional linear transformations are automorphisms
of k(t) fixing k, we conclude that the automorphisms fixing k are precisely
the fractional linear transformations. �

561.2

Determine the minimal polynomial over Q for the element 1 + 3
√

2 + 3
√

4.
Answer: First, note that 3

√
4 = 3

√
2 3
√

2, so 3
√

4 ∈ Q( 3
√

2). Hence, 1 +
3
√

2 + 3
√

4 ∈ Q( 3
√

2) and so

Q(1 + 3
√

2 + 3
√

4) ⊆ Q( 3
√

2),
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which is a Galois extension of degree 6 over Q. Hence, the other roots of
the minimal polynomial of 1 + 3

√
2 + 3

√
4 over Q are the distinct conjugates

of 1 + 3
√

2 + 3
√

4 under the Galois group, which we showed in class is simply
S3. Let ζ be the third root of unity ζ = −1/2 +

√
3/2i. Then the possible

conjugates of 1 + 3
√

2 + 3
√

4 are

1 + 3
√

2 + 3
√

4, 1 + ζ
3
√

2 + ζ2 3
√

4, 1 + ζ2 3
√

2 + ζ
3
√

4.

Now, the minimal polynomial m(x) is given by

m(x) = (x− (1 + 3
√

2 + 3
√

4))(x− (1 + ζ 3
√

2 + ζ2 3
√

4))(x− (1 + ζ2 3
√

2 + ζ 3
√

4))
= (x2 − (1 + ζ 3

√
2 + ζ2 3

√
4)x− (1 + 3

√
2 + 3

√
4)x

+( 3
√

2ζ + ζ + ζ2))(x− (1 + ζ2 3
√

2 + ζ 3
√

4))
= x3 − x2((1 + ζ 3

√
2 + ζ2 3

√
4) + (1 + 3

√
2 + 3

√
4) + (1 + ζ2 3

√
2 + ζ 3

√
4))

+x(( 3
√

2ζ + ζ + ζ2) + (1 + ζ 3
√

2 + ζ2 3
√

4)(1 + ζ2 3
√

2 + ζ 3
√

4)
+(1 + 3

√
2 + 3

√
4)(1 + ζ2 3

√
2 + ζ 3

√
4))− (1 + ζ2 3

√
2 + ζ 3

√
4)( 3

√
2ζ2 + ζ + ζ2)

= x3 − 3x2 − 3x− 1.

562.3

Determine the Galois group of (x2−2)(x2−3)(x2−5). Determine all the
subfields of the splitting field of this polynomial.

Answer: The splitting field K of this polynomial is generated by
√

2,
√

3,
√

5.
By our work below in Problem 15, we know that Q(

√
ai,
√

aj) is biquadratic
and Galois for distinct ai chosen from {

√
2,
√

3,
√

5}. This this is true for all
these terms, we know that Q(

√
2,
√

3,
√

5) is an extension of degree 2 over
Q(
√

ai,
√

aj), and hence of degree 8 over Q. Now, since Q(
√

2,
√

3,
√

5) is
the splitting field of a separable polynomial, it is Galois, and so the Galois
group is of order 8. Now, since for a ∈ {

√
2,
√

3,
√

5}, the minimal poly-
nomial of a over Q is x2 − a2, and since elements of the Galois group are
determined by their action on the three choices for a, and since elements
of the Galois group can only send a to ±a, we know that there are only 8
possible permutations of the choices of a. Namely

√
2 7→ ±

√
2√

3 7→ ±
√

3√
5 7→ ±

√
5.

Since the Galois group is of order 8, all these permutations are in the Galois
group.

Now, let a1 = 2, a2 = 3, a3 = 5 and define σi to be the permutation
that maps

√
ai to −√ai and fixes aj for j 6= i. Then we see, in fact, that

Gal(K/Q) = {1, σ1, σ2, σ3, σ1σ2, σ1σ3, σ2σ3, σ1σ2σ3}. Note that σ2
i = 1 for

each i = 1, 2, 3 and that, therefore, all elements of Gal(K/Q) are of order 2.
From this information and the fact that |Gal(K/Q)| = 8, we can conclude
that

Gal(K/Q) ' Z/2Z× Z/2Z× Z/2Z.
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Now, the following is a complete list of subgroups of Gal(K/Q):

{1, 〈σi〉, 〈σiσj〉, 〈σ1σ2σ3〉, 〈σi, σj〉, 〈σi, σjσk〉, 〈σ1σ2, σ1σ3〉,Gal(K/Q)}.

Hence, there are 14 distinct non-trivial proper subgroups of Gal(K/Q) and,
therefore, 14 subfields of K, each the fixed field of one of these subgroups.

Now, 〈σi〉 = {1, σi}, so, since σi fixes aj for j 6= i, we see that the fixed
field of 〈σi〉 is simply

Q(aj , ak)

where j 6= i, k 6= i. In other words, these subgroups give rise to the following
subfields:

Q(
√

2,
√

3), Q(
√

2,
√

5), Q(
√

3,
√

5).

Now, since 〈σi, σj〉 permutes
√

ai and √
aj , we see that the subfields corre-

sponding to subgroups of this type are:

Q(
√

3), Q(
√

3), Q(
√

5).

Turning to subgroups of the form 〈σi, σjσk〉, we see that none of the elements
of the form

√
ai are fixed under these permutations. However,

σjσk(
√

aj
√

ak) = (−√aj)(−
√

ak) =
√

aj
√

ak.

Hence, the subfields corresponding to these subgroups are:

Q(
√

6), Q(
√

10), Q(
√

15).

In fact, using what we know about the fixed elements under σjσk, we see
that the subfields associated with 〈σiσj〉 are:

Q(
√

2,
√

15), Q(
√

3,
√

10), Q(
√

5,
√

6).

Now, we turn to
〈σ1σ2, σ1σ3〉 = 〈σ1σ3, σ2σ3〉

Obviously, elements of this subgroup permute any element of the form√
ai, and some element of this group will permute any element of the form√
aj
√

ak. However,

σiσj(
√

2
√

3
√

5) =
√

2
√

3
√

5.

Hence, the corresponding subfield is

Q(
√

30).

Finally, σ1σ2σ3 permutes all elements of the form
√

ai, but no elements of
the form √

aj
√

ak. Hence, the corresponding subfield is:

Q(
√

6,
√

10,
√

15) = Q(
√

6,
√

10).

In the above, we’ve constructed 14 subfields of K; since there are ex-
actly 14 non-trivial proper subgroups of Gal(K/F ), these must be all such
subfields.

♣
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562.6

Let K = Q( 8
√

2, i) and let F1 = Q(i), F2 = Q(
√

2), F3 = Q(
√
−2). Prove

that Gal(K/F1) ' Z/8Z, Gal(K/F2) ' D8, Gal(K/F3) ' Q8.

Proof. Using the subgroup and subfield diagrams given in the chapter, we
see that, as a subfield of K, F1 is associated with the subgroup 〈σ〉, F2 is
associated with the subgroup 〈σ2, τ〉 and F3 is associated with the subgroup
〈σ2, τσ3〉, where

G = Gal(K/Q) = 〈σ, τ |σ8 = τ2 = 1, στ = τσ3〉.

Now, by the Fundamental Theorem of Galois Theory, this implies that

Gal(K/F1) = 〈σ〉
Gal(K/F2) = 〈σ2, τ〉
Gal(K/F3) = 〈σ2, τσ3〉

where each of these groups is subject to the relations on Gal(K/F ). Now,
it’s immediately clear that

Gal(K/F1) = 〈σ〉 ' Z/8Z,

since σ has order 8. To calculate Gal(K/F2), let γ = σ2. Then the first
relation in the presentation tells us that γ4 = 1. To be able to use the
second relation, we multiply both sides on the left by σ, yielding

σ2τ = στσ3 = τσ6.

Translating this in terms of τ and γ, we see that

γτ = τγ3 = τγ−1,

since γ4 = 1. Hence, combining this information, we see that

Gal(K/F2) = 〈σ2, τ〉 ' 〈γ, τ |γ4 = τ2 = 1, γτ = τγ−1〉 = D8

Finally, to calculate Gal(K/F3), let γ = σ2 and δ = τσ3. Then we see
immediately that

γ4 = (σ2)4 = σ8 = 1.

Also,
δ2 = (τσ3)2 = (στ)2

= στστ
= τσ3στ
= τσ3τσ3

= τσ2τσ6

= τστσ9

= τστσ
= ττσ4

= τ2σ4

= σ4

= γ2.
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Hence, we have the relations γ2 = δ2 and δ4 = 1. Now, we calculate

γδ = σ2τσ3

= στσ6

= τσ9

= τσ3σ6

= δγ3

= δγ−1

Hence, multiplying on the left by δ−1,

δ−1γδ = γ−1.

Therefore,

Gal(K/F3) = 〈σ2, τσ3〉 ' 〈γ, δ|γ4 = δ4 = 1, δ−1γδ = γ−1, γ2 = δ2〉.
However, this is precisely the quaternion group Q8, so we see that Gal(K/F3) '
Q8. �

562.15

Let F be a field of characteristic 6= 2.
(a) If K = F (

√
D1,

√
D2) where D1, D2 ∈ F have the property that none

of D1, D2, D1D2 is a square in F , prove that K/F is a Galois extension with
Gal(K/F ) isomorphic to the Klein 4-group.

Proof. We showed on the last homework (Problem 8 from Section 13.2),
that, since D1, D2, and D1D2 are not squares in F , K is an extension of
degree 4 over F . Furthermore, K is the splitting field of the polynomial

(x2 −D1)(x2 −D2),

which has four distinct roots, ±
√

D1,±
√

D2, and is therefore separable.
Since K is the splitting field of a separable polynomial, K/F is Galois. Now,
there are a total of 4 possibilities for elements in Gal(K/F ), the identity, σ,
τ and στ , where

σ(
√

D1) = −
√

D1, σ(
√

D2) =
√

D2

τ(
√

D1) =
√

D1, τ(
√

D2) = −
√

D2.

Since there are only four such possibilities, all of them must be realized
in the Galois group, and so we see that Gal(K/F ) = {1, σ, τ, στ}. Since
both σ and τ (and, hence, στ) are of order 2, this implies that Gal(K/F ) is
isomorphic to the Klein 4-group. �

(b) Conversely, suppose K/F is a Galois extension with Gal(K/F ) isomor-
phic to the Klein 4-group. Prove that K = F (

√
D1,

√
D2) where D1, D2 ∈ F

have the property that none of D1, D2, D1D2 is a square in F .

Proof. Since Gal(K/F ) is isomorphic to the Klein 4-group, it must be the
case that Gal(K/F ) = {1, σ, τ, στ}. Hence, all proper non-trivial subgroups
in Gal(K/F ) are of index 2; the following is a list: 〈σ〉, 〈τ〉, 〈στ〉. Each
of these three subgroups corresponds to its fixed field, which will be an
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extension of degree 2 over F . In other words, these subgroups correspond,
respectively, to field extensions

F (
√

α1), F (
√

α2), F (
√

α3)

where α1, α2, α3inF and each is distinct. Since these fields are extensions of
degree 2, we see that α1, α2, α3 cannot be squares in F . Now, clearly

F (
√

αi,
√

αj) ⊆ K

for each i, j = 1, 2, 3. Now, if F (
√

αi
√

αj) = F (
√

αi) for each choice of i, j,
then it’s clear that

F (
√

α1) = F (
√

α2) = F (
√

α3).

However, this in turn implies that σ = τ = στ , which cannot be true. Hence,
there exist i, j such that F (

√
αi,

√
αj) is an extension of degree larger than

1 over F (
√

αi) and F (√αj). Since K is an extension of degree 2 over each
F (
√

αk), this implies that

F (
√

αi,
√

αj) = K

for some choice of i, j. Suppose, without loss of generality that i = 1, j = 2.
Now, as we saw in last week’s homework (same reference as before, Problem
8 Section 13.2), in order for K to be an extension of degree 4, it must be
the case that

√
α1
√

α2 is not a square in F . Since K is indeed an extension
of degree 4, it must be the case that none of

√
α1,

√
α2,

√
α1
√

α2 is a square
in F . �

563.17

Let K/F be any finite extension and let α ∈ K. Let L be a Galois
extension of F containing K and let H ≤ Gal(L/F ) be the subgroup corre-
sponding to K. Define the norm of α from K to F to be

NK/F (α) =
∏
σ

σ(α),

where the product is taken over all embeddings of K into an algebraic closure
of F . This is a product of Galois conjugates of α. In particular, if K/F is
Galois this is

∏
σ∈Gal(K/F ) σ(α).

(a) Prove that NK/F (α) ∈ F .

Proof. Since this fact is not necessary to the proof of part (d) below, we
simply note that it is a consequence of part (d). �

(b) Prove that NK/F (αβ) = NK/F (α)NK/F (β), so that the norm is a
multiplicative map from K to F .



ALGEBRA HW 6 11

Proof. Since embeddings of K into an algebraic closure of F containing L are
homomorphisms, it must be the case that σ(αβ) = σ(α)σ(β) for α, β ∈ K,
since σ is just an embedding of K into such an algebraic closure. Hence,

NK/F (αβ) =
∏
σ

σ(αβ) =
∏
σ

σ(α)σ(β) =
∏
σ

σ(α)
∏
σ

σ(β) = NK/F (α)NK/F (β).

�

(c) Lt K = F (
√

D) be a quadratic extension of F . Show that NK/F (a +
b
√

D) = a2 −Db2.

Proof. Since K is a quadratic extension,

|G : H| = [K : F ] = 2,

meaning there are only two Galois conjugates of (a + b
√

D) in the product
NK/F (a + b

√
D). Furthermore, since K/F is necessarily Galois (since it is

of degree 2), the conjugate other than a + b
√

D must be a− b
√

D, since the
only non-identity element of Gal(K/F ) is the map that sends

√
D to −

√
D.

Therefore,

NK/F (α) = (a + b
√

D)(a− b
√

D) = a2 − (b
√

D)2 − a2 −Db2.

�

(d) Let mα(x) = xd + ad−1x
d−1 + . . . + a1x + a0 ∈ F [x] be the minimal

polynomial for α ∈ K over F . Let n = [K : F ]. Prove that d divides n, that
there are d distinct Galois conjugates of α which are all repeated n/d times
in the product above and conclude that NK/F (α) = (−1)na

n/d
0 .

Proof. We know that mα(x) is a product of linear terms of the form (x−αi),
where the αi are the distinct Galois conjugates of α, since the roots of the
minimal polynomial must be precisely the Galois conjugates of α. Therefore,
since deg(mα(x)) = d (and, hence, mα(x) has exactly d distinct roots), it
must be the case that α has exactly d distinct Galois conjugates.

Let E be the splitting field of mα(x) and let H ′ be the corresponding
subgroup of Gal(L/F ). Then, since α ∈ K∩E, we see that the corresponding
Galois subgroup, 〈H,H ′〉 is non-trivial; since it contains H, |G : 〈H,H ′〉|
must divide n. Since K ∩ E contains α, which has minimal polynomial of
degree d, it must be the case that [K∩E : F ] = kd for some integer k. Since
[K ∩E : F ] = |G : 〈H,H ′〉| which divides |G : H| = n, we see that d divides
n.

Furthermore, since there are n embeddings of K into an algebraic and
each sends α to a Galois conjugate of itself, of which there are d, we see that
each conjugate must be hit by n/d of these maps. Hence,

NK/F (α) =
∏
σ

σ(α) =

(
d∏

i=1

αi

)n/d

.



12 CLAY SHONKWILER

Now, we know that

xd + . . . + a1x + a0 = mα(x) =
d∏

i=1

(x− αi)

Therefore, the constant term a0 is given by

a0 =
d∏

i=1

−αi = (−1)d
d∏

i=1

αi,

or

(−1)da0 =
d∏

i=1

αi.

Hence,

NK/F (α) =

(
d∏

i=1

αi

)n/d

=
(
(−1)da0

)n/d
= (−1)na

n/d
0 .

�

563.18

With notation as in the previous problem, define the trace of α from K
to F to be

TrK/F (α) =
∑

σ

σ(α),

a sum of Galois conjugates of α.
(a) Prove that TrK/F (α) ∈ F .

Proof. Since this fact is not necessary to the proof of part (d) below, we
simply note that it is a consequence of part (d). �

(b) Prove that TrK/F (α + β) = TrK/F (α) + TrK/F (β), so that the trace
is an additive map from K to F .

Proof. Since embeddings of K into an algebraic closure of F containing L
are homomorphisms, it must be the case that σ(α + β) = σ(α) + σ(β) for
α, β ∈ K, since σ is just an embedding of K into such an algebraic closure.
Hence,

TrK/F (α + β) =
∑

σ σ(α + β) =
∑

σ σ(α) + σ(β) =
∑

σ σ(α) +
∑

σ σ(β)
= TrK/F (α) + TrK/F (β).

�

(c) Let K = F (
√

D) be a quadratic extension of F . Show that TrK/F (a+
b
√

D) = 2a.
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Proof. By the same reasoning as in Problem 17(c) above, we know that
a + b

√
D has only a single Galois conjugate aside from itself, a − b

√
D.

Hence,
TrK/F (α) = (a + b

√
D) + (a− b

√
D) = 2a.

�

(d) Let mα(x) be as in the previous problem. Prove that TrK/F (α) =
−n
d ad−1.

Proof. As we saw in 17(d) above, each of the d distinct Galois conjugates of
α is repeated n/d times in the sum that yields the trace. Hence,

TrK/F (α) = n/d
d∑

i=1

αi,

where α1, . . . , αd represent the d distinct conjugates of α. Now, we know
that

mα(x) =
d∏

i=1

(x− αi);

hence, if ad−1 is the coefficient on the d− 1 term in mα, then

ad−1 = −
d∑

i=1

αi.

Hence, we see that

TrK/F (α) =
−n

d
ad−1.

�
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