

ALGEBRA HW 6

CLAY SHONKWILER

547.4

Prove that $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$ are not isomorphic.

Proof. Suppose there exists an isomorphism $\phi : \mathbb{Q}(\sqrt{2}) \rightarrow \mathbb{Q}(\sqrt{3})$. Then, of course, it must be the case that $\phi(1) = 1$. Hence

$$2 = 1+1 = \phi(1)+\phi(1) = \phi(1+1) = \phi(2) = \phi(\sqrt{2}\sqrt{2}) = \phi(\sqrt{2})\phi(\sqrt{2}) = (\phi(\sqrt{2}))^2.$$

In other words, $\phi(\sqrt{2}) = \pm\sqrt{2}$. However, as we saw on the last homework (problem 8, page 510), since $2 \cdot 3 = 6$ is not a square in \mathbb{Q} , $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is an extension of degree 4 over \mathbb{Q} and hence of degree 2 over $\mathbb{Q}(\sqrt{3})$. In other words, $\pm\sqrt{2} \notin \mathbb{Q}(\sqrt{3})$. Therefore, we see that there is no such isomorphism ϕ and so $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$ cannot be isomorphic. \square

547.6

Let k be a field

(a) Show that the mapping $\phi : k[t] \rightarrow k[t]$ defined by $\phi(f(t)) = f(at + b)$ for fixed $a, b \in k$, $a \neq 0$ is an automorphism of $k[t]$ which is the identity on k .

Proof. Let $f(t), g(t) \in k[t]$. Then

$$\phi((f+g)(t)) = (f+g)(at+b) = f(at+b) + g(at+b) = \phi(f(t)) + \phi(g(t))$$

and

$$\phi((fg)(t)) = (fg)(at+b) = f(at+b)g(at+b) = \phi(f(t))\phi(g(t)),$$

so ϕ is a homomorphism. Now, suppose $\phi(f(t)) = \phi(g(t))$. Then

$$f(at+b) = g(at+b);$$

if we let $s = at + b$, then we see that $f(s) = g(s)$ in $k[s] = k[t]$, so ϕ is injective.

Now, let $g(t) \in k[t]$. Define

$$f(t) = g(t/a - b/a).$$

Then

$$\phi(f(t)) = f(at+b) = g(a(t/a - b/a) + b) = g(t - b + b) = g(t),$$

so ϕ is surjective. Therefore, we conclude that ϕ is an automorphism of $k[t]$. Now, if $c \in k \subset k[t]$, then

$$\phi(c) = c$$

so ϕ is the identity on k . \square

(b) Conversely, let ϕ be an automorphism of $k[t]$ which is the identity on k . Prove that there exist $a, b \in k$ with $a \neq 0$ such that $\phi(f(t)) = f(at + b)$ as in (a).

Proof. Since ϕ is the identity on k , it cannot be of the form

$$\phi(f(t)) = h(t)f(t) + g(t)$$

for any $h, g \in k[t]$. Hence, it must be the case that

$$\phi(f(t)) = f(g(t))$$

for some $g(t) \in k[t]$. Now, suppose the degree n of g is greater than one. Then elements in the image of ϕ must have degree divisible by n . However, if this were the case, it's clear that ϕ could not be surjective. Hence, we see that $\deg(g(t)) \leq 1$. If $\deg(g(t)) = 0$, then $g(t) = b$ for some $b \in k$. Hence, $\phi(f(t)) = f(b)$ is just a constant term for all $f \in k[t]$. Therefore, we conclude that it must be the case that $\deg(g(t)) = 1$, meaning $g(t) = at + b$ where $a, b \in k$ and $a \neq 0$. \square

547.7

This exercise determines $\text{Aut}(\mathbb{R}/\mathbb{Q})$.

(a) Prove that any $\sigma \in \text{Aut}(\mathbb{R}/\mathbb{Q})$ takes squares to squares and takes positive reals to positive reals. Conclude that $a < b$ implies that $\sigma a < \sigma b$ for every $a, b \in \mathbb{R}$.

Proof. Let $\sigma \in \text{Aut}(\mathbb{R}/\mathbb{Q})$ and let $a = b^2$ be a square in \mathbb{R} . Then

$$\sigma a = \sigma(b^2) = \sigma b \sigma b = (\sigma b)^2,$$

which is also a square in \mathbb{R} . Now, since every non-negative element of \mathbb{R} is a square and no negative elements are, and it must be true that $\sigma 0 = 0$, we see that it must be the case that σ takes positive reals to positive reals.

Now, let $a, b \in \mathbb{R}$ such that $a < b$. Then there exists some $r \in \mathbb{Q}$ such that

$$a < r < b.$$

Let $\delta = r - a$ and let $\gamma = b - r$. Note that δ and γ are both positive, even though a, r and b need not be. Then since σ is the identity on \mathbb{Q} and takes positive reals to positive reals, we see that

$$r = \sigma(r) = \sigma(r - a + a) = \sigma(r - a) + \sigma(a) = \sigma(\delta) + \sigma(a) > \sigma(a),$$

since $\sigma(\delta) > 0$. Similarly,

$$\begin{aligned} r = \sigma(r) = \sigma(r - b + b) &= \sigma(r - b) + \sigma(b) \\ &= \sigma(-\gamma) + \sigma(b) \\ &= \sigma(-1)\sigma(\gamma) + \sigma(b) \\ &= -\sigma(\gamma) + \sigma(b) \\ &< \sigma(b), \end{aligned}$$

since $\sigma(-1) = -1$ and $\sigma(\gamma) > 0$. Therefore, combining the above two results, we see that

$$\sigma(a) < r < \sigma(b).$$

□

(b) Prove that $\frac{-1}{m} < a - b < \frac{1}{m}$ implies $\frac{-1}{m} < \sigma a - \sigma b < \frac{1}{m}$ for every positive integer m . Conclude that σ is a continuous map on \mathbb{R} .

Proof. Suppose $a, b \in \mathbb{R}$ such that

$$\frac{-1}{m} < a - b < \frac{1}{m}.$$

Adding b to all terms, this implies that

$$b - \frac{1}{m} < a < b + \frac{1}{m}.$$

By our result in part (a), then, we know that

$$\sigma b - \frac{1}{m} = \sigma b - \sigma\left(\frac{1}{m}\right) = \sigma\left(b - \frac{1}{m}\right) < \sigma a < \sigma\left(b + \frac{1}{m}\right) = \sigma b + \sigma\left(\frac{1}{m}\right) = \sigma b + \frac{1}{m}.$$

Subtracting σb from all terms, then, we see that

$$-\frac{1}{m} < \sigma a - \sigma b < \frac{1}{m}.$$

Therefore, if $\epsilon > 0$, there exists a $\delta > 0$ (namely any fraction of the form $\frac{1}{m} < \epsilon$), such that, if $|a - b| < \delta$,

$$|a - b| < \delta < \epsilon,$$

so σ is continuous on \mathbb{R} . □

(c) Prove that any continuous map on \mathbb{R} which is the identity on \mathbb{Q} is the identity map, hence $\text{Aut}(\mathbb{R}/\mathbb{Q}) = 1$.

Proof. Let f be a continuous map on \mathbb{R} which is the identity on \mathbb{Q} , let $b \in \mathbb{R}$ and let $\epsilon > 0$. Since f is continuous, there exists $\gamma > 0$ such that, if $|b - a| < \gamma$,

$$|f(b) - f(a)| < \epsilon/2.$$

Let $\delta = \min\{\epsilon/2, \gamma\}$. Let $a \in \mathbb{Q}$ such that $|b - a| < \delta$. Then

$$\begin{aligned} |b - f(b)| &= |b - a + a - f(b)| \\ &\leq |b - a| + |a - f(b)| \\ &= |b - a| + |f(a) - f(b)| \\ &= |b - a| + |f(b) - f(a)| \\ &< \delta + \epsilon/2 \\ &\leq \epsilon/2 + \epsilon/2 \\ &= \epsilon. \end{aligned}$$

In other words, $f(b) = b$. Since our choice of b was arbitrary, we conclude that, in fact, f is the identity on all of \mathbb{R} . Hence, the identity map is the only element of $\text{Aut}(\mathbb{R}/\mathbb{Q})$, so

$$\text{Aut}(\mathbb{R}/\mathbb{Q}) = 1.$$

□

547.8

Prove that the automorphisms of the rational function field $k(t)$ which fix k are precisely the *fractional linear transformations* determined by $t \mapsto \frac{at+b}{ct+d}$ for $a, b, c, d \in k$, $ad - bc \neq 0$.

Proof. First, suppose ϕ is a map from $k(t)$ to itself such that, for $f(t) \in k(t)$,

$$\phi(f(t)) = f\left(\frac{at+b}{ct+d}\right).$$

Now, suppose $\phi(g(t)) = \phi(f(t))$ for some $f(t), g(t) \in k(t)$. Then

$$g\left(\frac{at+b}{ct+d}\right) = f\left(\frac{at+b}{ct+d}\right).$$

Therefore, $g \equiv f$ in $k\left(\frac{at+b}{ct+d}\right)$. Now, by the work we did in the last homework (Problem 18, Section 13.2), we know that

$$\left[k(t) : k\left(\frac{at+b}{ct+d}\right)\right] = \max(\deg(at+b), \deg(ct+d)) = 1,$$

so $k\left(\frac{at+b}{ct+d}\right) = k(t)$, and so we see that $g \equiv f$ in $k(t)$. Hence, ϕ is injective.

Now, since

$$\text{Im}(\phi) = k\left(\frac{at+b}{ct+d}\right)$$

and, as we just saw, $k\left(\frac{at+b}{ct+d}\right) = k(t)$, ϕ must be surjective.

Now, if $f, g \in k(t)$, then

$$\phi((f+g)(t)) = (f+g)\left(\frac{at+b}{ct+d}\right) = f\left(\frac{at+b}{ct+d}\right) + g\left(\frac{at+b}{ct+d}\right) = \phi(f(t)) + \phi(g(t))$$

and

$$\phi((fg)(t)) = (fg) \left(\frac{at+b}{ct+d} \right) = f \left(\frac{at+b}{ct+d} \right) g \left(\frac{at+b}{ct+d} \right) = \phi(f(t))\phi(g(t)).$$

Therefore, ϕ is a homomorphism. Since it is bijective, we see that ϕ is an automorphism. Therefore, all maps of the given form are automorphisms of $k(t)$. Furthermore, these maps fix any constant functions (i.e., elements of k), so we see that all such maps are automorphisms of $k(t)$ which fix k .

On the other hand, suppose γ is an automorphism of $k(t)$ which fixes k . Then, in principle, it could be the case that, for $f \in k(t)$,

$$\gamma(f(t)) = g(f(h(t))),$$

where $g, h \in k(t)$. However, since γ must fix elements of k , we see that g can only be the identity. In other words,

$$\gamma(f(t)) = f(h(t))$$

where $h(t) = \frac{P(t)}{Q(t)}$ where P and Q are relatively prime polynomials over k .

Note that

$$\text{Im}(\gamma) = k(h(t)) = k \left(\frac{P(t)}{Q(t)} \right).$$

Now, again by the work we did last week on Problem 18, Section 13.2, we know that

$$[k(t) : k(h(t))] = \max(\deg(P(t)), \deg(Q(t))).$$

However, since γ is an automorphism, it must be the case that $\text{Im}(\gamma) = k(t)$, which is to say that

$$[k(t) : k(h(t))] = 1.$$

Hence, we see that both P and Q must be of degree ≤ 1 . Hence, $P(t) = at+b$ and $Q(t) = ct+d$ for some $a, b, c, d \in k$. The relative primeness of P and Q means that, if $c \neq 0$, it cannot be the case that $\frac{ad}{c} = b$ (else it would be true that $\frac{a}{c}(ct+d) = at+b$) and, if $c = 0$, it cannot be the case that $a = 0$. Re-arranging, we see that this implies that

$$ad \neq bc \quad \text{or} \quad ad - bc \neq 0.$$

Having shown that all automorphisms of $k(t)$ fixing k are fractional linear transformations and all fractional linear transformations are automorphisms of $k(t)$ fixing k , we conclude that the automorphisms fixing k are precisely the fractional linear transformations. \square

561.2

Determine the minimal polynomial over \mathbb{Q} for the element $1 + \sqrt[3]{2} + \sqrt[3]{4}$.

Answer: First, note that $\sqrt[3]{4} = \sqrt[3]{2}\sqrt[3]{2}$, so $\sqrt[3]{4} \in \mathbb{Q}(\sqrt[3]{2})$. Hence, $1 + \sqrt[3]{2} + \sqrt[3]{4} \in \mathbb{Q}(\sqrt[3]{2})$ and so

$$\mathbb{Q}(1 + \sqrt[3]{2} + \sqrt[3]{4}) \subseteq \mathbb{Q}(\sqrt[3]{2}),$$

which is a Galois extension of degree 6 over \mathbb{Q} . Hence, the other roots of the minimal polynomial of $1 + \sqrt[3]{2} + \sqrt[3]{4}$ over \mathbb{Q} are the distinct conjugates of $1 + \sqrt[3]{2} + \sqrt[3]{4}$ under the Galois group, which we showed in class is simply S_3 . Let ζ be the third root of unity $\zeta = -1/2 + \sqrt{3}/2i$. Then the possible conjugates of $1 + \sqrt[3]{2} + \sqrt[3]{4}$ are

$$1 + \sqrt[3]{2} + \sqrt[3]{4}, 1 + \zeta \sqrt[3]{2} + \zeta^2 \sqrt[3]{4}, 1 + \zeta^2 \sqrt[3]{2} + \zeta \sqrt[3]{4}.$$

Now, the minimal polynomial $m(x)$ is given by

$$\begin{aligned} m(x) &= (x - (1 + \sqrt[3]{2} + \sqrt[3]{4}))(x - (1 + \zeta \sqrt[3]{2} + \zeta^2 \sqrt[3]{4}))(x - (1 + \zeta^2 \sqrt[3]{2} + \zeta \sqrt[3]{4})) \\ &= (x^2 - (1 + \zeta \sqrt[3]{2} + \zeta^2 \sqrt[3]{4})x - (1 + \sqrt[3]{2} + \sqrt[3]{4})x \\ &\quad + (\sqrt[3]{2}\zeta + \zeta + \zeta^2))(x - (1 + \zeta^2 \sqrt[3]{2} + \zeta \sqrt[3]{4})) \\ &= x^3 - x^2((1 + \zeta \sqrt[3]{2} + \zeta^2 \sqrt[3]{4}) + (1 + \sqrt[3]{2} + \sqrt[3]{4}) + (1 + \zeta^2 \sqrt[3]{2} + \zeta \sqrt[3]{4})) \\ &\quad + x((\sqrt[3]{2}\zeta + \zeta + \zeta^2) + (1 + \zeta \sqrt[3]{2} + \zeta^2 \sqrt[3]{4})(1 + \zeta^2 \sqrt[3]{2} + \zeta \sqrt[3]{4}) \\ &\quad + (1 + \sqrt[3]{2} + \sqrt[3]{4})(1 + \zeta^2 \sqrt[3]{2} + \zeta \sqrt[3]{4})) - (1 + \zeta^2 \sqrt[3]{2} + \zeta \sqrt[3]{4})(\sqrt[3]{2}\zeta^2 + \zeta + \zeta^2) \\ &= x^3 - 3x^2 - 3x - 1. \end{aligned}$$

562.3

Determine the Galois group of $(x^2 - 2)(x^2 - 3)(x^2 - 5)$. Determine *all* the subfields of the splitting field of this polynomial.

Answer: The splitting field K of this polynomial is generated by $\sqrt{2}, \sqrt{3}, \sqrt{5}$. By our work below in Problem 15, we know that $\mathbb{Q}(\sqrt{a_i}, \sqrt{a_j})$ is biquadratic and Galois for distinct a_i chosen from $\{\sqrt{2}, \sqrt{3}, \sqrt{5}\}$. This is true for all these terms, we know that $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ is an extension of degree 2 over $\mathbb{Q}(\sqrt{a_i}, \sqrt{a_j})$, and hence of degree 8 over \mathbb{Q} . Now, since $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ is the splitting field of a separable polynomial, it is Galois, and so the Galois group is of order 8. Now, since for $a \in \{\sqrt{2}, \sqrt{3}, \sqrt{5}\}$, the minimal polynomial of a over \mathbb{Q} is $x^2 - a^2$, and since elements of the Galois group are determined by their action on the three choices for a , and since elements of the Galois group can only send a to $\pm a$, we know that there are only 8 possible permutations of the choices of a . Namely

$$\begin{aligned} \sqrt{2} &\mapsto \pm\sqrt{2} \\ \sqrt{3} &\mapsto \pm\sqrt{3} \\ \sqrt{5} &\mapsto \pm\sqrt{5}. \end{aligned}$$

Since the Galois group is of order 8, all these permutations are in the Galois group.

Now, let $a_1 = 2, a_2 = 3, a_3 = 5$ and define σ_i to be the permutation that maps $\sqrt{a_i}$ to $-\sqrt{a_i}$ and fixes a_j for $j \neq i$. Then we see, in fact, that $\text{Gal}(K/\mathbb{Q}) = \{1, \sigma_1, \sigma_2, \sigma_3, \sigma_1\sigma_2, \sigma_1\sigma_3, \sigma_2\sigma_3, \sigma_1\sigma_2\sigma_3\}$. Note that $\sigma_i^2 = 1$ for each $i = 1, 2, 3$ and that, therefore, all elements of $\text{Gal}(K/\mathbb{Q})$ are of order 2. From this information and the fact that $|\text{Gal}(K/\mathbb{Q})| = 8$, we can conclude that

$$\text{Gal}(K/\mathbb{Q}) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.$$

Now, the following is a complete list of subgroups of $\text{Gal}(K/\mathbb{Q})$:

$$\{1, \langle \sigma_i \rangle, \langle \sigma_i \sigma_j \rangle, \langle \sigma_1 \sigma_2 \sigma_3 \rangle, \langle \sigma_i, \sigma_j \rangle, \langle \sigma_i, \sigma_j \sigma_k \rangle, \langle \sigma_1 \sigma_2, \sigma_1 \sigma_3 \rangle, \text{Gal}(K/\mathbb{Q})\}.$$

Hence, there are 14 distinct non-trivial proper subgroups of $\text{Gal}(K/\mathbb{Q})$ and, therefore, 14 subfields of K , each the fixed field of one of these subgroups.

Now, $\langle \sigma_i \rangle = \{1, \sigma_i\}$, so, since σ_i fixes a_j for $j \neq i$, we see that the fixed field of $\langle \sigma_i \rangle$ is simply

$$\mathbb{Q}(a_j, a_k)$$

where $j \neq i, k \neq i$. In other words, these subgroups give rise to the following subfields:

$$\mathbb{Q}(\sqrt{2}, \sqrt{3}), \mathbb{Q}(\sqrt{2}, \sqrt{5}), \mathbb{Q}(\sqrt{3}, \sqrt{5}).$$

Now, since $\langle \sigma_i, \sigma_j \rangle$ permutes $\sqrt{a_i}$ and $\sqrt{a_j}$, we see that the subfields corresponding to subgroups of this type are:

$$\mathbb{Q}(\sqrt{3}), \mathbb{Q}(\sqrt{3}), \mathbb{Q}(\sqrt{5}).$$

Turning to subgroups of the form $\langle \sigma_i, \sigma_j \sigma_k \rangle$, we see that none of the elements of the form $\sqrt{a_i}$ are fixed under these permutations. However,

$$\sigma_j \sigma_k(\sqrt{a_j} \sqrt{a_k}) = (-\sqrt{a_j})(-\sqrt{a_k}) = \sqrt{a_j} \sqrt{a_k}.$$

Hence, the subfields corresponding to these subgroups are:

$$\mathbb{Q}(\sqrt{6}), \mathbb{Q}(\sqrt{10}), \mathbb{Q}(\sqrt{15}).$$

In fact, using what we know about the fixed elements under $\sigma_j \sigma_k$, we see that the subfields associated with $\langle \sigma_i \sigma_j \rangle$ are:

$$\mathbb{Q}(\sqrt{2}, \sqrt{15}), \mathbb{Q}(\sqrt{3}, \sqrt{10}), \mathbb{Q}(\sqrt{5}, \sqrt{6}).$$

Now, we turn to

$$\langle \sigma_1 \sigma_2, \sigma_1 \sigma_3 \rangle = \langle \sigma_1 \sigma_3, \sigma_2 \sigma_3 \rangle$$

Obviously, elements of this subgroup permute any element of the form $\sqrt{a_i}$, and some element of this group will permute any element of the form $\sqrt{a_j} \sqrt{a_k}$. However,

$$\sigma_i \sigma_j(\sqrt{2} \sqrt{3} \sqrt{5}) = \sqrt{2} \sqrt{3} \sqrt{5}.$$

Hence, the corresponding subfield is

$$\mathbb{Q}(\sqrt{30}).$$

Finally, $\sigma_1 \sigma_2 \sigma_3$ permutes all elements of the form $\sqrt{a_i}$, but no elements of the form $\sqrt{a_j} \sqrt{a_k}$. Hence, the corresponding subfield is:

$$\mathbb{Q}(\sqrt{6}, \sqrt{10}, \sqrt{15}) = \mathbb{Q}(\sqrt{6}, \sqrt{10}).$$

In the above, we've constructed 14 subfields of K ; since there are exactly 14 non-trivial proper subgroups of $\text{Gal}(K/\mathbb{Q})$, these must be all such subfields.

562.6

Let $K = \mathbb{Q}(\sqrt[8]{2}, i)$ and let $F_1 = \mathbb{Q}(i)$, $F_2 = \mathbb{Q}(\sqrt{2})$, $F_3 = \mathbb{Q}(\sqrt{-2})$. Prove that $\text{Gal}(K/F_1) \simeq \mathbb{Z}/8\mathbb{Z}$, $\text{Gal}(K/F_2) \simeq D_8$, $\text{Gal}(K/F_3) \simeq Q_8$.

Proof. Using the subgroup and subfield diagrams given in the chapter, we see that, as a subfield of K , F_1 is associated with the subgroup $\langle \sigma \rangle$, F_2 is associated with the subgroup $\langle \sigma^2, \tau \rangle$ and F_3 is associated with the subgroup $\langle \sigma^2, \tau\sigma^3 \rangle$, where

$$G = \text{Gal}(K/\mathbb{Q}) = \langle \sigma, \tau \mid \sigma^8 = \tau^2 = 1, \sigma\tau = \tau\sigma^3 \rangle.$$

Now, by the Fundamental Theorem of Galois Theory, this implies that

$$\begin{aligned} \text{Gal}(K/F_1) &= \langle \sigma \rangle \\ \text{Gal}(K/F_2) &= \langle \sigma^2, \tau \rangle \\ \text{Gal}(K/F_3) &= \langle \sigma^2, \tau\sigma^3 \rangle \end{aligned}$$

where each of these groups is subject to the relations on $\text{Gal}(K/F)$. Now, it's immediately clear that

$$\text{Gal}(K/F_1) = \langle \sigma \rangle \simeq \mathbb{Z}/8\mathbb{Z},$$

since σ has order 8. To calculate $\text{Gal}(K/F_2)$, let $\gamma = \sigma^2$. Then the first relation in the presentation tells us that $\gamma^4 = 1$. To be able to use the second relation, we multiply both sides on the left by σ , yielding

$$\sigma^2\tau = \sigma\tau\sigma^3 = \tau\sigma^6.$$

Translating this in terms of τ and γ , we see that

$$\gamma\tau = \tau\gamma^3 = \tau\gamma^{-1},$$

since $\gamma^4 = 1$. Hence, combining this information, we see that

$$\text{Gal}(K/F_2) = \langle \sigma^2, \tau \rangle \simeq \langle \gamma, \tau \mid \gamma^4 = \tau^2 = 1, \gamma\tau = \tau\gamma^{-1} \rangle = D_8$$

Finally, to calculate $\text{Gal}(K/F_3)$, let $\gamma = \sigma^2$ and $\delta = \tau\sigma^3$. Then we see immediately that

$$\gamma^4 = (\sigma^2)^4 = \sigma^8 = 1.$$

Also,

$$\begin{aligned} \delta^2 &= (\tau\sigma^3)^2 = (\sigma\tau)^2 \\ &= \sigma\tau\sigma\tau \\ &= \tau\sigma^3\sigma\tau \\ &= \tau\sigma^3\tau\sigma^3 \\ &= \tau\sigma^2\tau\sigma^6 \\ &= \tau\sigma\tau\sigma^9 \\ &= \tau\sigma\tau\sigma \\ &= \tau\tau\sigma^4 \\ &= \tau^2\sigma^4 \\ &= \sigma^4 \\ &= \gamma^2. \end{aligned}$$

Hence, we have the relations $\gamma^2 = \delta^2$ and $\delta^4 = 1$. Now, we calculate

$$\begin{aligned}\gamma\delta &= \sigma^2\tau\sigma^3 \\ &= \sigma\tau\sigma^6 \\ &= \tau\sigma^9 \\ &= \tau\sigma^3\sigma^6 \\ &= \delta\gamma^3 \\ &= \delta\gamma^{-1}\end{aligned}$$

Hence, multiplying on the left by δ^{-1} ,

$$\delta^{-1}\gamma\delta = \gamma^{-1}.$$

Therefore,

$$\text{Gal}(K/F_3) = \langle \sigma^2, \tau\sigma^3 \rangle \simeq \langle \gamma, \delta \mid \gamma^4 = \delta^4 = 1, \delta^{-1}\gamma\delta = \gamma^{-1}, \gamma^2 = \delta^2 \rangle.$$

However, this is precisely the quaternion group Q_8 , so we see that $\text{Gal}(K/F_3) \simeq Q_8$. \square

562.15

Let F be a field of characteristic $\neq 2$.

(a) If $K = F(\sqrt{D_1}, \sqrt{D_2})$ where $D_1, D_2 \in F$ have the property that none of D_1, D_2, D_1D_2 is a square in F , prove that K/F is a Galois extension with $\text{Gal}(K/F)$ isomorphic to the Klein 4-group.

Proof. We showed on the last homework (Problem 8 from Section 13.2), that, since D_1, D_2 , and D_1D_2 are not squares in F , K is an extension of degree 4 over F . Furthermore, K is the splitting field of the polynomial

$$(x^2 - D_1)(x^2 - D_2),$$

which has four distinct roots, $\pm\sqrt{D_1}, \pm\sqrt{D_2}$, and is therefore separable. Since K is the splitting field of a separable polynomial, K/F is Galois. Now, there are a total of 4 possibilities for elements in $\text{Gal}(K/F)$, the identity, σ , τ and $\sigma\tau$, where

$$\begin{aligned}\sigma(\sqrt{D_1}) &= -\sqrt{D_1}, & \sigma(\sqrt{D_2}) &= \sqrt{D_2} \\ \tau(\sqrt{D_1}) &= \sqrt{D_1}, & \tau(\sqrt{D_2}) &= -\sqrt{D_2}.\end{aligned}$$

Since there are only four such possibilities, all of them must be realized in the Galois group, and so we see that $\text{Gal}(K/F) = \{1, \sigma, \tau, \sigma\tau\}$. Since both σ and τ (and, hence, $\sigma\tau$) are of order 2, this implies that $\text{Gal}(K/F)$ is isomorphic to the Klein 4-group. \square

(b) Conversely, suppose K/F is a Galois extension with $\text{Gal}(K/F)$ isomorphic to the Klein 4-group. Prove that $K = F(\sqrt{D_1}, \sqrt{D_2})$ where $D_1, D_2 \in F$ have the property that none of D_1, D_2, D_1D_2 is a square in F .

Proof. Since $\text{Gal}(K/F)$ is isomorphic to the Klein 4-group, it must be the case that $\text{Gal}(K/F) = \{1, \sigma, \tau, \sigma\tau\}$. Hence, all proper non-trivial subgroups in $\text{Gal}(K/F)$ are of index 2; the following is a list: $\langle \sigma \rangle, \langle \tau \rangle, \langle \sigma\tau \rangle$. Each of these three subgroups corresponds to its fixed field, which will be an

extension of degree 2 over F . In other words, these subgroups correspond, respectively, to field extensions

$$F(\sqrt{\alpha_1}), F(\sqrt{\alpha_2}), F(\sqrt{\alpha_3})$$

where $\alpha_1, \alpha_2, \alpha_3$ in F and each is distinct. Since these fields are extensions of degree 2, we see that $\alpha_1, \alpha_2, \alpha_3$ cannot be squares in F . Now, clearly

$$F(\sqrt{\alpha_i}, \sqrt{\alpha_j}) \subseteq K$$

for each $i, j = 1, 2, 3$. Now, if $F(\sqrt{\alpha_i}, \sqrt{\alpha_j}) = F(\sqrt{\alpha_i})$ for each choice of i, j , then it's clear that

$$F(\sqrt{\alpha_1}) = F(\sqrt{\alpha_2}) = F(\sqrt{\alpha_3}).$$

However, this in turn implies that $\sigma = \tau = \sigma\tau$, which cannot be true. Hence, there exist i, j such that $F(\sqrt{\alpha_i}, \sqrt{\alpha_j})$ is an extension of degree larger than 1 over $F(\sqrt{\alpha_i})$ and $F(\sqrt{\alpha_j})$. Since K is an extension of degree 2 over each $F(\sqrt{\alpha_k})$, this implies that

$$F(\sqrt{\alpha_i}, \sqrt{\alpha_j}) = K$$

for some choice of i, j . Suppose, without loss of generality that $i = 1, j = 2$. Now, as we saw in last week's homework (same reference as before, Problem 8 Section 13.2), in order for K to be an extension of degree 4, it must be the case that $\sqrt{\alpha_1}\sqrt{\alpha_2}$ is not a square in F . Since K is indeed an extension of degree 4, it must be the case that none of $\sqrt{\alpha_1}, \sqrt{\alpha_2}, \sqrt{\alpha_1}\sqrt{\alpha_2}$ is a square in F . \square

563.17

Let K/F be any finite extension and let $\alpha \in K$. Let L be a Galois extension of F containing K and let $H \leq \text{Gal}(L/F)$ be the subgroup corresponding to K . Define the *norm* of α from K to F to be

$$N_{K/F}(\alpha) = \prod_{\sigma} \sigma(\alpha),$$

where the product is taken over all embeddings of K into an algebraic closure of F . This is a product of Galois conjugates of α . In particular, if K/F is Galois this is $\prod_{\sigma \in \text{Gal}(K/F)} \sigma(\alpha)$.

(a) Prove that $N_{K/F}(\alpha) \in F$.

Proof. Since this fact is not necessary to the proof of part (d) below, we simply note that it is a consequence of part (d). \square

(b) Prove that $N_{K/F}(\alpha\beta) = N_{K/F}(\alpha)N_{K/F}(\beta)$, so that the norm is a multiplicative map from K to F .

Proof. Since embeddings of K into an algebraic closure of F containing L are homomorphisms, it must be the case that $\sigma(\alpha\beta) = \sigma(\alpha)\sigma(\beta)$ for $\alpha, \beta \in K$, since σ is just an embedding of K into such an algebraic closure. Hence,

$$N_{K/F}(\alpha\beta) = \prod_{\sigma} \sigma(\alpha\beta) = \prod_{\sigma} \sigma(\alpha)\sigma(\beta) = \prod_{\sigma} \sigma(\alpha) \prod_{\sigma} \sigma(\beta) = N_{K/F}(\alpha)N_{K/F}(\beta).$$

□

(c) Let $K = F(\sqrt{D})$ be a quadratic extension of F . Show that $N_{K/F}(a + b\sqrt{D}) = a^2 - Db^2$.

Proof. Since K is a quadratic extension,

$$|G : H| = [K : F] = 2,$$

meaning there are only two Galois conjugates of $(a + b\sqrt{D})$ in the product $N_{K/F}(a + b\sqrt{D})$. Furthermore, since K/F is necessarily Galois (since it is of degree 2), the conjugate other than $a + b\sqrt{D}$ must be $a - b\sqrt{D}$, since the only non-identity element of $\text{Gal}(K/F)$ is the map that sends \sqrt{D} to $-\sqrt{D}$. Therefore,

$$N_{K/F}(\alpha) = (a + b\sqrt{D})(a - b\sqrt{D}) = a^2 - (b\sqrt{D})^2 - a^2 - Db^2.$$

□

(d) Let $m_{\alpha}(x) = x^d + a_{d-1}x^{d-1} + \dots + a_1x + a_0 \in F[x]$ be the minimal polynomial for $\alpha \in K$ over F . Let $n = [K : F]$. Prove that d divides n , that there are d distinct Galois conjugates of α which are all repeated n/d times in the product above and conclude that $N_{K/F}(\alpha) = (-1)^n a_0^{n/d}$.

Proof. We know that $m_{\alpha}(x)$ is a product of linear terms of the form $(x - \alpha_i)$, where the α_i are the distinct Galois conjugates of α , since the roots of the minimal polynomial must be precisely the Galois conjugates of α . Therefore, since $\deg(m_{\alpha}(x)) = d$ (and, hence, $m_{\alpha}(x)$ has exactly d distinct roots), it must be the case that α has exactly d distinct Galois conjugates.

Let E be the splitting field of $m_{\alpha}(x)$ and let H' be the corresponding subgroup of $\text{Gal}(L/F)$. Then, since $\alpha \in K \cap E$, we see that the corresponding Galois subgroup, $\langle H, H' \rangle$ is non-trivial; since it contains H , $|G : \langle H, H' \rangle|$ must divide n . Since $K \cap E$ contains α , which has minimal polynomial of degree d , it must be the case that $[K \cap E : F] = kd$ for some integer k . Since $[K \cap E : F] = |G : \langle H, H' \rangle|$ which divides $|G : H| = n$, we see that d divides n .

Furthermore, since there are n embeddings of K into an algebraic and each sends α to a Galois conjugate of itself, of which there are d , we see that each conjugate must be hit by n/d of these maps. Hence,

$$N_{K/F}(\alpha) = \prod_{\sigma} \sigma(\alpha) = \left(\prod_{i=1}^d \alpha_i \right)^{n/d}.$$

Now, we know that

$$x^d + \dots + a_1x + a_0 = m_\alpha(x) = \prod_{i=1}^d (x - \alpha_i)$$

Therefore, the constant term a_0 is given by

$$a_0 = \prod_{i=1}^d -\alpha_i = (-1)^d \prod_{i=1}^d \alpha_i,$$

or

$$(-1)^d a_0 = \prod_{i=1}^d \alpha_i.$$

Hence,

$$N_{K/F}(\alpha) = \left(\prod_{i=1}^d \alpha_i \right)^{n/d} = \left((-1)^d a_0 \right)^{n/d} = (-1)^n a_0^{n/d}.$$

□

563.18

With notation as in the previous problem, define the *trace* of α from K to F to be

$$\text{Tr}_{K/F}(\alpha) = \sum_{\sigma} \sigma(\alpha),$$

a sum of Galois conjugates of α .

(a) Prove that $\text{Tr}_{K/F}(\alpha) \in F$.

Proof. Since this fact is not necessary to the proof of part (d) below, we simply note that it is a consequence of part (d). □

(b) Prove that $\text{Tr}_{K/F}(\alpha + \beta) = \text{Tr}_{K/F}(\alpha) + \text{Tr}_{K/F}(\beta)$, so that the trace is an additive map from K to F .

Proof. Since embeddings of K into an algebraic closure of F containing L are homomorphisms, it must be the case that $\sigma(\alpha + \beta) = \sigma(\alpha) + \sigma(\beta)$ for $\alpha, \beta \in K$, since σ is just an embedding of K into such an algebraic closure. Hence,

$$\begin{aligned} \text{Tr}_{K/F}(\alpha + \beta) &= \sum_{\sigma} \sigma(\alpha + \beta) = \sum_{\sigma} \sigma(\alpha) + \sigma(\beta) = \sum_{\sigma} \sigma(\alpha) + \sum_{\sigma} \sigma(\beta) \\ &= \text{Tr}_{K/F}(\alpha) + \text{Tr}_{K/F}(\beta). \end{aligned}$$

□

(c) Let $K = F(\sqrt{D})$ be a quadratic extension of F . Show that $\text{Tr}_{K/F}(a + b\sqrt{D}) = 2a$.

Proof. By the same reasoning as in Problem 17(c) above, we know that $a + b\sqrt{D}$ has only a single Galois conjugate aside from itself, $a - b\sqrt{D}$. Hence,

$$\text{Tr}_{K/F}(\alpha) = (a + b\sqrt{D}) + (a - b\sqrt{D}) = 2a.$$

□

(d) Let $m_\alpha(x)$ be as in the previous problem. Prove that $\text{Tr}_{K/F}(\alpha) = \frac{-n}{d}a_{d-1}$.

Proof. As we saw in 17(d) above, each of the d distinct Galois conjugates of α is repeated n/d times in the sum that yields the trace. Hence,

$$\text{Tr}_{K/F}(\alpha) = n/d \sum_{i=1}^d \alpha_i,$$

where $\alpha_1, \dots, \alpha_d$ represent the d distinct conjugates of α . Now, we know that

$$m_\alpha(x) = \prod_{i=1}^d (x - \alpha_i);$$

hence, if a_{d-1} is the coefficient on the $d-1$ term in m_α , then

$$a_{d-1} = - \sum_{i=1}^d \alpha_i.$$

Hence, we see that

$$\text{Tr}_{K/F}(\alpha) = \frac{-n}{d}a_{d-1}.$$

□

DRL 3E3A, UNIVERSITY OF PENNSYLVANIA
E-mail address: shonkwil@math.upenn.edu