
TOPOLOGY HW 1

CLAY SHONKWILER

18.1

Prove that for functions f : R → R, the ε-δ definition of continuity implies
the open set definition.

Proof. Let f : R → R be continuous under the ε-δ definition of continuity.
Then we want to show that f is continuous under the open set definition. Let
(a, b) be a basis element of the standard topology of R. Let x ∈ f−1(a, b).
Then f(x) ∈ (a, b). Let ε = min{f(x) − a, b − f(x)}. Then, since f is
continuous under the ε-δ definition, there exists δ > 0 such that, if |x−y| < δ,

|f(x)− f(y)| < ε

which is to say

f(x− δ, x + δ) ⊆ (f(x)− ε, f(x) + ε) ⊆ (a, b).

In turn, this means that

(x− δ, x + δ) ⊆ f−1(a, b).

(x − δ, x + δ) is open and contains x, so f−1(a, b) is open, meaning f is
continuous under the open set definition. Since our choice of f was arbitrary,
we can conclude that the ε-δ defintion of continuity implies the open set
defintion.

�

18.6

Find a function f : R → R that is continuous at precisely one point.
Example: Let f : R → R be defined by

f(x) =
{

x2 x ∈ Q
0 x /∈ Q

Since we’ve just shown that the ε-δ definition of continuity is equivalent to
the open set definition, we use an ε-δ argument to show that f is continuous
at 0 and nowhere else. Let ε > 0. Define δ <

√
ε. Then, if |x− 0| < δ,

|f(x)− f(0)| = |f(x)| ≤ |x2| = |x|2 < |δ|2 = ε.

Hence, f is continuous at 0. Suppose f is continuous at some point c 6= 0.
Then, for ε < c2/2, there exists δ > 0 such that, if |x− c| < δ,

|f(x)− f(c)| < ε.
1
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If c is rational, then there exists an irrational number b ∈ (c−δ, c+δ). Then

|f(b)− f(c)| = |0− c2| = c2 > ε.

On the other hand, suppose c is irrational. Since f(x) = x2 is continuous,
there exists δ0 > 0 such that

|x− c| < δ0 ⇒ |f(x)− f(c)| < ε.

Let δ1 = min{δ, δ0}. Then there exists rational a ∈ (c− δ1, c + δ1, so

|f(a)− f(c)| = |a2 − 0| = a2

where
|c2 − a2| < ε

or a2 > ε. In either case, we see that f is not continuous at any point other
than 0.

♣

18.8

Let Y be an ordered set in the order topology. Let f, g : X → Y be
continuous.

(a) Show that the set {x|f(x) ≤ g(x)} is closed in X.

Lemma 0.1. If Z is a topological space under the order topology, then Z is
Hausdorff.

Proof. Let Z be a topological space under the order topology. Let x, y ∈ Y
such that x < y. If there exists z ∈ Z such that x < z < y, then we can
construct disjoint open sets containing x and y, respectively, in the following
way:

If there exist a, b ∈ Z such that a < x and y < b, then (a, z) and (z, b)
are open in Z, are disjoint, and contain x and y, respectively. If x is the
minimal element in Z, then, if b > y, [x, z), (z, b) are disjoint, open in Z
and contain x and y, respectively. If y is the maximal element of Z, then,
if there exists a < x, (a, z), (z, y] are disjoint, open in Z and contain x and
y, respectively. Finally, if x is the minimal element and y is the maximal
element in Z, then [x, z), (z, y] are disjoint, open in Z and contain x and y,
respectively. Hence, whenever there exists z ∈ Z such that x < z < y, we
can construct disjoint open sets containing x and y respectively.

On the other hand, if there exists no z ∈ Z such that x < z < y, then, if
a < x and b > y, (a, y), (x, b) are disjoint open sets in Z that contain x and
y, respectively. Again, if x is the minimal element and/or y is the maximal
element in Z, we can still construct two disjoint open sets, on containing x
and one containing y.

Hence, we can conclude that Z is Hausdorff. �

Proposition 0.2. {x|f(x) ≤ g(x)} is closed in X.
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Proof. To show that {x|f(x) ≤ g(x)} is closed, it is sufficient to demonstrate
that X\{x|f(x) ≤ g(x)} = {x|f(x) > g(x)} = A is open in X. Let x0 ∈ A.
Then g(x0) < f(x0). Since Y is Hausdorff by the above lemma, there exist
disjoint open sets U and V contained in Y such that f(x0) ∈ U , g(x0) ∈ V .
Then, since f, g are continuous, f−1(U) and g−1(V ) are open in X, so their
intersection

f−1(U) ∩ g−1(V )

is open in X. Furthermore, x0 ∈ f−1(U) ∩ g−1(V ), so there exists open
W ⊆ f−1(U) ∩ g−1(V ) containing x0. Since U and V are disjoint,

f(W ) ∩ g(W ) = ∅

meaning, for all w ∈ W ,

g(w) < f(w).

In other words, W ⊆ A. Therefore, we can conclude that A is open, meaning
that its complement, {x|f(x) ≤ g(x)} is closed. �

(b) Let h : X → Y be the function

h(x) min{f(x), g(x)}.

Show that h is continuous.

Proof. By a similar argument to that made in (a) above, we can show that
B = {x|g(x) ≤ f(x)} is closed. Also, since f and g are continuous on X, it
is true that f is continuous on A = {x|f(x) ≤ g(x)} and g is continuous on
B. Furthermore, A ∪B = X and A ∩B = {x|f(x) = g(x)}, which is to say
that f(x) = g(x) for all x ∈ A ∩ B. By the Pasting Lemma, then, we can
construct h′ : X → Y such that h′(x) = f(x) when x ∈ A and h′(x) = g(x)
when x ∈ B. Finally, we need only note that h ≡ h′ to demonstrate that h
is continuous. �

18.9

Let {Aα} be a collection of subsets of X; let X = ∪αAα. Let f : X → Y ;
suppose that f |Aα is continuous for each α.

(a) Show that if the collection {Aα} is finite and each set Aα is closed,
then f is continuous.

Proof. If the collection {Aα} is finite, then X = ∪n
i=1Ai for some integer n.

If n = 2, then X = A1 ∪A2, A1 and A2 are closed in X, f |A1 : A1 → Y and
f |A2 : A2 → Y are continuous and f |A1(x) = f |A2(x) for every x ∈ A1∩A2.
Hence, by the pasting lemma, we can construct continuous f ′ : X → Y such
that f ′(x) = f |A1(x) if x ∈ A1 and f ′(x) = f |A2(x) if x ∈ A2. It is clear
that f ≡ f ′, so f is continuous.
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Now, suppose that every map f fulfilling the above hypotheses is contin-
uous on any X =

⋃n
i=1 Ai. Let X =

⋃n+1
i=1 Ai. Then,(

n⋃
i=1

Ai

)
∪An+1.

Since ∪n
i=1Ai is a finite union of closed sets, it is closed, as is An+1. Fur-

thermore, by the inductive hypothesis, f | ∪n
1 Ai is continuous, as is f |An+1.

Hence, by the pasting lemma, we can construct continuous f ′ : X → Y such
that f ′(x) = f | ∪n

1 Ai(x) if x ∈ ∪n
1Ai and f ′(x) = f |An+1(x) if x ∈ An+1.

Again, f ≡ f ′, so f is continuous.
Therefore, by induction, if the collection {Aα} is finite and each set Aα

is closed, then f is continuous. �

(b) Find an example where the collection {Aα} is countable and each Aα

is closed, but f is not continuous.
Example: Let f : Rstd → RK be the identity map. Then f is not

continuous, as (−1, 1)−K is open in RK but not in R, since no neighborhood
of {0} is contained in (−1, 1)−K. Let

An = (−∞,− 1
n

] ∪ {0} ∪ [
1
n

,∞).

Then {An} is countable and R = ∪∞1 An.
We want to show, then, that f |An : An → RK is continuous. Let U ⊆ RK

be open. Then

f−1|An(U) = f−1|(−∞, 1
n

](U) ∪ f−1|{0}(U) ∪ f−1|[ 1
n

,∞)(U)
= (U ∩ (−∞,− 1

n ])
⋃

(U ∩ {0})
⋃

(U ∩ [ 1
n ,∞))

Since f is the identity map. Each of the three terms in this union are open
in An, the outer two by definition of the subspace topology and U ∩ {0}
because

U ∩ {0} =
{

∅, open by definition
{0} = An ∩ (− 1

n+1 , 1
n+1)

Which is open in An. Hence, f−1|An(U) is the union of three open sets in
An, so f−1|An(U) is open. In turn, this implies that f |An is continuous for
all n.

♣
(c) An indexed family of sets {Aα} is said to be locally finite if each point

x of X has a neighborhood that intersects Aα for only finitely many values
of α. Show that if the family {Aα} is locally finite and each Aα is closed,
then f is continuous.

Proof. Let {Aα} be locally finite. Let x ∈ X. Then there exists a neighbor-
hood Ux such that Ux ∩ Aα 6= ∅ for only finitely many α. Index the α for
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which this intersection is nonempty by {αi}i=1,...n. Then

f |Ux(Ux) =
n⋃

i=1

f |Aαi(Ux).

Since each f |Aαi is continuous, we can use an analog of the argument used
in (a) above to show that the pasting lemma implies that f |Ux is continuous.
Since

X =
⋃

x∈X

Ux

then, by Theorem 18.2(f) (the local formulation of continuity), f is contin-
uous. �

19.1

Prove Theorem 19.2

Proof. Let each Xα be a space given by a basis Bα. Then we want to show
that the collection of sets of the form

P =
∏
α∈J

Bα

is a basis for the box topology on
∏

α∈J Xα. Let

U =
∏
α∈J

Uα

be an open set in the box topology and let x ∈ U . Then

x = (xα)α∈J

where each xα ∈ Xα. For each xβ , there exists an element Bβ ⊆ Uβ of the
basis for the topology on Xβ that contains xβ. Since∏

α∈J

Bα ∈ P,

we can conclude that, if T ′ is a topology generated by the collection P, then
T ′ will be finer than the box topology. Obviously, the box topology is finer
than T ′, if it is a topology, as every basis element of T ′ (again, assuming
it is a topology) is contained in the standard basis for the box topology.
Hence the equality of the topologies will be clear once we demonstrate that
P is, in fact, the basis of a topology. The fact that any element x ∈

∏
Xα

is contained in an element of P is merely a special case of the result proved
above, so we turn our attention to the second prerequisite for a basis. If x
is contained in the intersection of two elements

x ∈ (
∏

αa∈J

Bαa) ∩ (
∏

αb∈J

Bαb

then, for each Bβa , Bβb
⊆ Xβ , xβ ∈ Bβa and x ∈ Bβb

, which is to say that

x ∈ Bβa ∩Bβb
.
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Since Xβ is a subspace, there exists a basis element

Bβc ⊆ Bβa ∩Bβb

that contains xα. Then∏
α∈J

Bαc ⊆

(∏
α∈J

Bαa

)
∩

(∏
α∈J

Bαb

)
is a basis element and contains x. Hence, Bα is a basis for a topology on∏

α∈J Xα. Thus, our collection of
∏

Bα is a basis for the box topology.
Now, we turn our attention to the collection of all sets of the same form,

where Bα ∈ Bα for finitely many α and Bα = Xα for all the remaining
indices. We want to show that this collection Q serves as a basis for the
product topology on

∏
α∈J Xα. Let

U =
∏
α∈J

Uα

be a basis element of the product topology and suppose x ∈ U . Let x =
(xα) ∈ U . Then, for each α for which Uα 6= Xα we assign an index Uαi .
Then, since Bαj is a basis for Xαj , there exists a basis element Bαi containing
xα and contained in Uαj . Then the product∏

α∈J

Bα

where Bα = Bαi for each of the finite number of properly contained Bαi

and Bα = Xα for all the remaining indices is an element of our collection.
Thus, the topology T generated by this basis (assuming it is a basis) is finer
than the product topology on

∏
Xα. Furthermore, by arguments virtually

identical to those above concerning the box topology, Q is a basis for a
topology on

∏
Xα. Finally, we note that any element of Q is an element

of the standard basis for the product topology, so Q generates the product
topology. �

19.2

Prove Theorem 19.3

Proof. Let
U =

∏
α∈J

Uα

be a basis element as described in problem 19.1 above for either the box or
product topology. Then, for each α,

Uα ∩Aα

is an element of the basis for the subspace topology on Aα. Then it is clear
that

B =
∏
α∈J

(Uα ∩Aα)
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is an element of the basis of the box or product topology on
∏

Aα. Let
x = (xα) ∈ B. Then each xα ∈ Uα ∩Aα. Specifically, x ∈ U and x ∈

∏
Aα,

so

x ∈ U ∩
∏
α∈J

Aα

a basis element for the subspace topology on
∏

Aα. Hence the subspace
topology on

∏
Aα is finer than the box or product topology on

∏
Aα.

On the other hand, if

x ∈ U ∩
∏
α∈J

Aα,

an element of the basis for the subspace topology, then xα ∈ Uα and xα ∈ Aα.
In other words,

xα ∈ Uα ∩Aα

for all α, so

x ∈
∏
α∈J

(Uα ∩Aα) ,

a basis element of the box or product topology on
∏

Aα. Therefore, the box
or product topology on

∏
Aα is finer than the subspace topology.

Since each is finer than the other, we conclude that
∏

Aα is a subspace of∏
Xα if both products are given either the box or the product topology. �

19.9

Show that the choice axiom is equivalent to the statement that for any
indexed family {Aα}α∈J of nonempty sets, with J 6= 0, the cartesian product∏

α∈J

Aα

is not empty.

Proof. According to the choice axiom, there exists a choice function

c : {Aα}α∈J →
⋃
α∈J

Aα

such that c(Aα) = aα ∈ Aα. Then

(c(Aα))α∈J = (aα)α∈J ∈
∏
α∈J

Aα.

�
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19.10

Let A be a set; let {Xα}α∈J be an indexed family of spaces; and let
{fα}α∈J be an indexed family of functions fα : A → Xα.

(a) Show there is a unique coarsest topology T on A relative to which
each of the functions fα is continuous.

Proof. In order for fα to be continuous in T , then, for each open Uα ∈ Xα,
f−1

α (Uα) must be open in A. Furthermore, for any α,

f−1
α (Xα) = A

so, if x ∈ A, x ∈ f−1
α (Xα). So we let T consist of all countable unions of

finite intersections of such f−1
α (Uα), for all open Uα in each Xα. Suppose

there exists a topology T1 in which each fα is continuous which is coarser
than T . Then there exists an element U of T which is not an element of T1.
By construction,

U =
⋃
α∈J

(
n⋂

i=1

f−1
αi

(Uαi

)
where J is a countable set and each Uαi is an open set in some Xαi . Then,
for each αi, i = 1, . . . , n, f−1

αi
(Uαi) must be open in T1. Hence, since U is a

countable union of a finite intersection of open sets, U ∈ T1. Hence, T1 ⊆ T ,
a contradiction. Hence, T is the unique coarsest topology of A under which
each of the fα is open. �

(b)Let
Sβ = {f−1

β (Uβ)|Uβ is open in Xβ},
and let S = ∪Sβ . Show that S is a subbasis for T .

Proof. As we’ve constructed it, T is the topology generated by the subbasis
S. �

(c) Show that a map g : Y → A is continuous relative to T if and only if
each map fα ◦ g is continuous.

Proof. Suppose, first of all, that g is continuous. Then, since each fα is con-
tinuous, fα ◦ g is continuous, since the composition of continuous functions
is continuous.

On the other hand, suppose that each fα ◦ g is continuous. To show g is
continuous, it suffices to show that, for each subbasis element Sβ of T ,

g−1(Sβ)

is open in Y . However, each Sβ = f−1
β (Uβ) for open Uβ ⊆ Xβ. Furthermore,

since each fα ◦ g is continuous,

g−1(Sβ) = g−1(f−1
β (Uβ)) = (fβ ◦ g)−1(Uβ)

is open in Y . Thus, we can conclude that g is continuous. �
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(d) Let f : A →
∏

Xα be defined by the equation

f(a) = (fα(a))α∈J ;

let Z denote the subspace f(A) of the product space
∏

Xα. Show that the
image under f of each element of T is an open set of Z.

1

Let X be a topological space. X ⊆ X is said to be dense in X if S = X.
(a) Let X be an infinite set with the finite complement topology. Show

that any infinite subset S of X is dense in X.

Proof. Since X is an infinite set, by definition we know that the closed
subsets of X are the finite subsets of X and X itself. Specifically, the only
infinite closed subset of X is X itself. Let S be an infinite subset of X.
Then

S ⊆ S.

Hence, the closed set S must be infinite; the only infinite closed subset is
X, so S = X. Hence, S is dense in X. �

(b) Now suppose f, g : X → Y are continuous functions between two
topological spaces, for which there is a dense subset S ⊆ X such that f(x) =
g(x) for any x ∈ S. Show that if Y is Hausdorff, then f(x) = g(x) for all
x ∈ X.

Proof. Suppose not. Let x ∈ X\S such that f(x) 6= g(x). Since Y is
Hausdorff, this means that there exist disjoint open neighborhoods U and
V of f(x) and g(x), respectively. Hence, since f and g are continuous,
there exist open neighborhoods Ux and Vx of x such that Ux ⊆ f−1(U) and
Vx ⊆ g−1(V ). Clearly,

f(Ux) ∩ g(Vx) = ∅
so f(a) 6= g(a) for a ∈ Ux ∩ Vx. However, x ∈ Ux ∩ Vx, so

Ux ∩ Vx 6= ∅.
Since S is dense in X, x is a limit point of S, so

S ∩ (Ux ∩ Vx) 6= ∅.
Let s ∈ S ∩ (Ux ∩ Vx). Then f(s) = g(s), a contradiction. From this
contradiction, we can conclude that, in fact, f(x) = g(x) for all x ∈ X. �

2

Let A and B be homeomorphic subsets of Rn. If A is closed in Rn does
it follow that B is also closed in Rn? For each dimension in which this is
true please provide a proof and in each dimension for which it is false please
provide a counterexample.

No, this does not hold true for any dimension. In general, let A = Rn and

B = (−π/2, π/2)× Rn−1.
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Clearly, A is closed in Rn and B is open in Rn. However, the map

f : A → B

defined by
f(x) = f(x1, . . . , fn) = (tan−1 x1, x2, . . . , xn)

is a homeomorphism from A to B. To see that f is continuous, we need only
note that it’s coordinate functions (namely tan−1 and the identity map) are
continuous. Furthermore, tan is continuous on (−π/2, π/2), so

f−1(x) = f−1(x1, . . . , xn) = (tanx1, x2, . . . , xn)

is continuous, since its coordinate functions are.
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