TOPOLOGY HW 1

CLAY SHONKWILER

18.1

Prove that for functions f : R — R, the e-§ definition of continuity implies
the open set definition.

Proof. Let f : R — R be continuous under the e-d definition of continuity.
Then we want to show that f is continuous under the open set definition. Let
(a,b) be a basis element of the standard topology of R. Let = € f~'(a,b).
Then f(z) € (a,b). Let € = min{f(x) — a,b — f(x)}. Then, since f is
continuous under the e- definition, there exists § > 0 such that, if [z—y| < J,

[f(x) = fy)| <e
which is to say
fle=0b,24+06)C (f(x) —e f(x) +€) € (a,b).
In turn, this means that
(z— 0,2 +6) C f(a,b).

(r — 6,2 + &) is open and contains z, so f~!(a,b) is open, meaning f is
continuous under the open set definition. Since our choice of f was arbitrary,
we can conclude that the e-§ defintion of continuity implies the open set
defintion.

O

18.6

Find a function f : R — R that is continuous at precisely one point.
Example: Let f: R — R be defined by

2
oz zeQ
Since we’ve just shown that the e-d definition of continuity is equivalent to

the open set definition, we use an e-d argument to show that f is continuous
at 0 and nowhere else. Let € > 0. Define 6 < \/e. Then, if |z — 0| < 9,

2 2 2
[f () = FO)] = |f(2)] < [27] = [z]* < [0]" = e
Hence, f is continuous at 0. Suppose f is continuous at some point ¢ # 0.
Then, for € < ¢2/2, there exists § > 0 such that, if |z — ¢| < 6,

[f(z) = flo)] <e

1
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If ¢ is rational, then there exists an irrational number b € (¢—9,c+0). Then

If(b) = f)=10-cF[=c* > e

On the other hand, suppose c is irrational. Since f(z) = =
there exists dp > 0 such that

= el < do = |f(x) — f(e)] <.
Let 61 = min{d, dp}. Then there exists rational a € (¢ — d1, ¢ + d1, so
f(a) = f(e)] = |a® = 0] = a?

2 is continuous,

where

| —a? < e
or a® > €. In either case, we see that f is not continuous at any point other

than 0.
&

18.8

Let Y be an ordered set in the order topology. Let f,g : X — Y be
continuous.
(a) Show that the set {z|f(x) < g(x)} is closed in X.

Lemma 0.1. If Z is a topological space under the order topology, then Z is
Hausdorff.

Proof. Let Z be a topological space under the order topology. Let z,y € Y
such that x < y. If there exists z € Z such that x < z < y, then we can
construct disjoint open sets containing x and y, respectively, in the following
way:

If there exist a,b € Z such that a < x and y < b, then (a, z) and (z,b)
are open in Z, are disjoint, and contain z and y, respectively. If x is the
minimal element in Z, then, if b > y, [z,2),(2,b) are disjoint, open in Z
and contain x and y, respectively. If y is the maximal element of Z, then,
if there exists a < z, (a, 2), (2, y] are disjoint, open in Z and contain z and
y, respectively. Finally, if x is the minimal element and y is the maximal
element in Z, then [z, 2), (2, y] are disjoint, open in Z and contain x and y,
respectively. Hence, whenever there exists z € Z such that z < z < y, we
can construct disjoint open sets containing x and y respectively.

On the other hand, if there exists no z € Z such that = < z < y, then, if
a<xand b >y, (a,y), (x,b) are disjoint open sets in Z that contain x and
y, respectively. Again, if x is the minimal element and/or y is the maximal
element in Z, we can still construct two disjoint open sets, on containing x
and one containing y.

Hence, we can conclude that Z is Hausdorff. ([l

Proposition 0.2. {z|f(z) < g(x)} is closed in X.
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Proof. To show that {z|f(x) < g(x)} is closed, it is sufficient to demonstrate
that X\{z|f(z) < g(z)} = {z|f(x) > g(x)} = A is open in X. Let zg € A.
Then g(zo) < f(zo). Since Y is Hausdorff by the above lemma, there exist
disjoint open sets U and V contained in Y such that f(z¢) € U, g(zg) € V.
Then, since f, g are continuous, f~1(U) and ¢g~!(V) are open in X, so their
intersection

FHUyng (V)

is open in X. Furthermore, zo € f~1(U) N g~1(V), so there exists open
W C f~YU)N g1 (V) containing x¢. Since U and V are disjoint,

fW)ng(W) =90

meaning, for all w € W,

g(w) < f(w).
In other words, W C A. Therefore, we can conclude that A is open, meaning
that its complement, {z|f(z) < g(x)} is closed. O

(b) Let h: X — Y be the function
h(z) min{ f(z), g(x)}.

Show that h is continuous.

Proof. By a similar argument to that made in (a) above, we can show that
B = {z|g(x) < f(x)} is closed. Also, since f and g are continuous on X, it
is true that f is continuous on A = {z|f(z) < g(z)} and ¢ is continuous on
B. Furthermore, AU B = X and AN B = {z|f(x) = g(x)}, which is to say
that f(z) = g(z) for all z € AN B. By the Pasting Lemma, then, we can
construct b’ : X — Y such that '(z) = f(z) when x € A and h/(z) = g(z)
when x € B. Finally, we need only note that h = h’ to demonstrate that h
is continuous. (]

18.9

Let {A,} be a collection of subsets of X; let X = Uy,A,. Let f: X — Y
suppose that f|A, is continuous for each «.

(a) Show that if the collection {A,} is finite and each set A, is closed,
then f is continuous.

Proof. If the collection {A,} is finite, then X = U}" ; A; for some integer n.
If n =2, then X = A1 U Ag, A; and Ajg are closed in X, f|4;: A} — Y and
flAa : A2 — Y are continuous and f|A;i(x) = f|A2(x) for every x € A1 N As.
Hence, by the pasting lemma, we can construct continuous f’: X — Y such
that f'(z) = flAi(z) if z € Ay and f'(z) = f|Aa(x) if x € Ay. Tt is clear
that f = f’, so f is continuous.
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Now, suppose that every map f fulfilling the above hypotheses is contin-
uous on any X = J | A;. Let X = U?:ll A;. Then,

(00t

i=1

Since U}* ;A; is a finite union of closed sets, it is closed, as is A,41. Fur-
thermore, by the inductive hypothesis, f| U} A; is continuous, as is f|Ap41.
Hence, by the pasting lemma, we can construct continuous f’: X — Y such
that f/'(z) = f| U} Ai(z) if z € UTA; and f(x) = flAns1(z) if 2 € Apgq.
Again, f = f/, so f is continuous.

Therefore, by induction, if the collection {A,} is finite and each set A,
is closed, then f is continuous. [l

(b) Find an example where the collection {A,} is countable and each A,
is closed, but f is not continuous.

Example: Let f : Ryy — Ry be the identity map. Then f is not
continuous, as (—1,1)— K is open in Rx but not in R, since no neighborhood
of {0} is contained in (—1,1) — K. Let

A, = (—oo,—%]U{O}U[%,oo).

Then {4,} is countable and R = U°A4,,.
We want to show, then, that f|A4, : A, — R is continuous. Let U C Ry
be open. Then

FHANU) = f_l‘(foo,%](U) Uf o (U) U f_1|[%,oo)(U)
= (UN (=00, =N UU n{0H) U N[5, 0))

Since f is the identity map. Each of the three terms in this union are open
in A,, the outer two by definition of the subspace topology and U N {0}
because

(), open by definition

U”{O}:{ {0} = Ap 1 (—1r, L)

Tt ntl

Which is open in A,,. Hence, f~1|4, (U) is the union of three open sets in
Ay, 50 f7Ya,(U) is open. In turn, this implies that f|a, is continuous for
all n.

&

(¢) An indexed family of sets { A} is said to be locally finite if each point
x of X has a neighborhood that intersects A, for only finitely many values
of a. Show that if the family {A,} is locally finite and each A, is closed,
then f is continuous.

Proof. Let {Ay} be locally finite. Let x € X. Then there exists a neighbor-
hood U, such that U, N A, # 0 for only finitely many a. Index the « for
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which this intersection is nonempty by {a;}i=1,.n. Then
n
f|Ux<Ux) = U f‘Aai(Ux)-
i=1

Since each f|A,, is continuous, we can use an analog of the argument used
in (a) above to show that the pasting lemma implies that f|U, is continuous.

Since
X= v
zeX
then, by Theorem 18.2(f) (the local formulation of continuity), f is contin-
uous. ]
19.1

Prove Theorem 19.2

Proof. Let each X, be a space given by a basis B,. Then we want to show
that the collection of sets of the form

P=]] B«

acd
is a basis for the box topology on [], ¢ ; Xa. Let
U=]]Ua
acJ

be an open set in the box topology and let x € U. Then

r = (xa)ozEJ

where each z, € X,. For each xg, there exists an element Bg C Up of the
basis for the topology on Xz that contains xg. Since

HBQGP,

a€eJ

we can conclude that, if 7”7 is a topology generated by the collection P, then
7' will be finer than the box topology. Obviously, the box topology is finer
than 77, if it is a topology, as every basis element of 7’ (again, assuming
it is a topology) is contained in the standard basis for the box topology.
Hence the equality of the topologies will be clear once we demonstrate that
P is, in fact, the basis of a topology. The fact that any element z € [[ X,
is contained in an element of P is merely a special case of the result proved
above, so we turn our attention to the second prerequisite for a basis. If x
is contained in the intersection of two elements

2 € (I Ba) 0 (I] Bes

ag€J apeJ
then, for each Bg,, Bg, € X3, v3 € Bg, and x € Bg,, which is to say that
T € Bﬂa N Bﬁb‘
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Since Xz is a subspace, there exists a basis element
Bﬁc g Bﬁa N Bﬂb

that contains z,. Then

I1 Ba. € (H Baa) N (H Bab>
acJ aed acJ
is a basis element and contains . Hence, B, is a basis for a topology on
[Iocs Xo- Thus, our collection of [] B, is a basis for the box topology.
Now, we turn our attention to the collection of all sets of the same form,
where B, € B, for finitely many « and B, = X, for all the remaining
indices. We want to show that this collection O serves as a basis for the
product topology on [] . ; Xo. Let

U:HUa

aed
be a basis element of the product topology and suppose x € U. Let z =
(o) € U. Then, for each a for which U, # X, we assign an index U,,.
Then, since By, is a basis for X, there exists a basis element B, containing
T, and contained in Uaj. Then the product

[17.
acJ
where B, = B,, for each of the finite number of properly contained B,
and B, = X, for all the remaining indices is an element of our collection.
Thus, the topology 7 generated by this basis (assuming it is a basis) is finer
than the product topology on [[ X,. Furthermore, by arguments virtually
identical to those above concerning the box topology, Q is a basis for a
topology on [[ X,. Finally, we note that any element of Q is an element
of the standard basis for the product topology, so Q generates the product
topology. ([

19.2
Prove Theorem 19.3
Proof. Let

U=]]U.

acJ
be a basis element as described in problem 19.1 above for either the box or
product topology. Then, for each «,

Us N A,

is an element of the basis for the subspace topology on A,. Then it is clear
that

B=]] UanAd)

aed
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is an element of the basis of the box or product topology on [] A,. Let
x = (zq) € B. Then each z, € U, N A,. Specifically, z € U and z € [] Aq,
SO

xEUﬂHAa

a€eJ

a basis element for the subspace topology on [[ A,. Hence the subspace
topology on [] Ay is finer than the box or product topology on [] Aa.
On the other hand, if

erﬂHAa,

aeJ

an element of the basis for the subspace topology, then z,, € U, and x, € A,.
In other words,

To € Uy N A,

for all «, so

T € H(UaﬂAa),

aeJ

a basis element of the box or product topology on [[ A,. Therefore, the box
or product topology on [[ A, is finer than the subspace topology.

Since each is finer than the other, we conclude that [] A, is a subspace of
[] X4 if both products are given either the box or the product topology. O

19.9

Show that the choice axiom is equivalent to the statement that for any
indexed family { A, } aes of nonempty sets, with J # 0, the cartesian product

11 4a
aclJ

is not empty.
Proof. According to the choice axiom, there exists a choice function

c: {Aa}aeJ - U Ao
acJ
such that ¢(A,) = aq € Aq. Then

(C<AC¥))046J - (aa)aeJ € H Aq.
acJ
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19.10

Let A be a set; let {X,}acs be an indexed family of spaces; and let
{fa}acs be an indexed family of functions f, : A — X,.

(a) Show there is a unique coarsest topology 7 on A relative to which
each of the functions f, is continuous.

Proof. In order for f, to be continuous in 7, then, for each open U, € X,,
f21(U,) must be open in A. Furthermore, for any a,

fo?l(Xa) =A

so, if z € A, v € f71(X4). So we let T consist of all countable unions of
finite intersections of such f,!(U,), for all open U, in each X,. Suppose
there exists a topology 77 in which each f, is continuous which is coarser
than 7. Then there exists an element U of 7 which is not an element of 77.

By construction,
v=U (ﬂ fJf(Uai)

aceJ \i=1
where J is a countable set and each U,, is an open set in some X,,;. Then,
for each o, i =1,...,n, fojil(Uai) must be open in 77. Hence, since U is a
countable union of a finite intersection of open sets, U € 77. Hence, 77 C 7T,
a contradiction. Hence, 7 is the unique coarsest topology of A under which
each of the f, is open. O

(b)Let
Sg = {f5"(Up)|Ug is open in Xz},
and let § = USg. Show that S is a subbasis for 7.

Proof. As we’'ve constructed it, 7 is the topology generated by the subbasis
S. O

(c) Show that a map ¢g: Y — A is continuous relative to 7 if and only if
each map f, o ¢ is continuous.

Proof. Suppose, first of all, that ¢ is continuous. Then, since each f, is con-
tinuous, f, © g is continuous, since the composition of continuous functions
is continuous.

On the other hand, suppose that each f, o g is continuous. To show g is
continuous, it suffices to show that, for each subbasis element Sg of 7,

971(Sp)

is open in Y. However, each Sg = f/gl(Ug) for open Ug C Xg. Furthermore,
since each f, o g is continuous,

9 (Ss) =97 (f5' (Up)) = (f509) 7' (Up)

is open in Y. Thus, we can conclude that g is continuous. O
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(d) Let f: A — ][ Xa be defined by the equation

fla) = (fala))aes;

let Z denote the subspace f(A) of the product space [[ Xo. Show that the
image under f of each element of 7 is an open set of Z.

1

Let X be a topological space. X C X is said to be dense in X if S = X.
(a) Let X be an infinite set with the finite complement topology. Show
that any infinite subset S of X is dense in X.

Proof. Since X is an infinite set, by definition we know that the closed
subsets of X are the finite subsets of X and X itself. Specifically, the only
infinite closed subset of X is X itself. Let S be an infinite subset of X.
Then

ScCS.
Hence, the closed set S must be infinite; the only infinite closed subset is
X, s0 S = X. Hence, S is dense in X. O

(b) Now suppose f,g : X — Y are continuous functions between two
topological spaces, for which there is a dense subset S C X such that f(z) =
g(x) for any x € S. Show that if Y is Hausdorff, then f(z) = g(z) for all
rzeX.

Proof. Suppose not. Let z € X\S such that f(z) # g(z). Since Y is
Hausdorff, this means that there exist disjoint open neighborhoods U and
V of f(z) and g(x), respectively. Hence, since f and g are continuous,
there exist open neighborhoods U, and V,, of z such that U, C f~}(U) and
Ve € g~ 5(V). Clearly,

f(Uz) N g(Va:) =0
so f(a) # g(a) for a € U, N'V,,. However, z € U, NV, so

U, NV, # 0.

Since S is dense in X, z is a limit point of .S, so

SN (UsNVy) #0.

Let s € SN (Uz N V). Then f(s) = g(s), a contradiction. From this
contradiction, we can conclude that, in fact, f(z) = g(x) for allz € X. O

2

Let A and B be homeomorphic subsets of R™. If A is closed in R™ does
it follow that B is also closed in R™? For each dimension in which this is
true please provide a proof and in each dimension for which it is false please
provide a counterexample.

No, this does not hold true for any dimension. In general, let A = R" and

B = (—7/2,7/2) x R"1,
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Clearly, A is closed in R™ and B is open in R"™. However, the map
f:A— B
defined by
f(x) = f(z1,..., fn) = (tan txy, 20, ..., 2,)
is a homeomorphism from A to B. To see that f is continuous, we need only

note that it’s coordinate functions (namely tan~! and the identity map) are
continuous. Furthermore, tan is continuous on (—7/2,7/2), so

-1 -1
f(z)=f""(x1,...,2p) = (tanzy, z2,...,xy)
is continuous, since its coordinate functions are.
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