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The Incident Wave

The field from the antenna is £, which satisfies

(V2 —c20H)E™(t,x) = j(t, x)

| o—iw(t—t' —|z—y|/c)
e = [ (' y) dwdt'dy
antenna

81|z — Y

e~ w(t—|z—y|/c) ; o
/antenna/ 8772|a3_y‘ (w,y) way

where 7 = Fourier transform of J.

This model allows for:
e arbitrary waveforms, spatially distributed antennas

e array antennas in which different elements are activated with

different waveforms



Let y = v(s) + q, use far-field expansion: |q| << |Rs .| =

~R..-q+O(Rez|™

z—y|=|Rsz —q| = [Rs z

. e~ tw(t—|Rszl|/c) KR o
:> o t, £ ~ —t s,@” . ]
( ) / 87T2|RS,€13‘ /antenna ) j(w q) 4

FlJ|(w,s,x)

Antenna beam pattern at each frequency is Fourier transform of

(effective) current density on antenna



Putting it all together ...

e Born approximation for £°¢:

o 6—zw(t—7—|y—w|/c) o i
E (t,y):/ o p—— dwV (x)0zE"" (T, s, x)dTdx

e Incident field is

N i (1~ | Ra ) , |
£ (T,a;)z/ o P ) do

e Plug this in, use [*“~)7dr = 276(w — ') =

. p—iw(t—|y—z|/c—|Rq x| /c) ; V(e
5¢ t — F
( 7y) ” 87T2’y L CB|47T‘RS’w’ [ ](C‘J?S?w) W (CU) £

e Use antenna reception model:

Srec(t, s) // E€(t -t ,~v(s) —y)W(t', y)dydt’
antenna

e_ZW(t_2|RS,m|/C)fJ . . )
// 3273 | Rs 4| J(w, s, 2) FIW](w, s, z)dwV (z)dz



Apply matched filter

output of correlation receiver is of the form

d(t,s) = // e~ WI=2IRsal/C) Ay, 5, 2)dwV (x)dx

A includes factors for:
1. geometrical spreading
2. antenna beam patterns

3. wavelorm sent to antenna



Spotlight SAR

data is of the form

d(t,s) = / / e~ W2 Rsxl/€) Ay s, 2)dwV (x)da

from d, want to reconstruct V.



Fourier transtorm into frequency domain:

D(w,s) = /ezikRS"”A(w,s,w)de(w)da}

Choose origin of coordinates in antenna footprint,

use far-field approximation

e ——

v(s)| >> €] =  Rex=|v(s)—x|~|y(s)| —y(s) -z + -

D(w, s) ~ e2*l7(s)] /ezik'y/@)'w Alw, s, x) V(x)dx
S

approximate by (function of w, s) (function of x)

same as ISAR! use PFA



in the time domain:

X

Each view gives slices of the ground reflectivity function

Reconstruct a function from its integrals over lines

use FBP
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Stripmap SAR

Flight traclk

F 3

e v v (Antenna velocity)

E'm (}Iear_raﬂge incidence} ¥ [,ﬂhlmﬂg—track directimﬂj

v (Across-track direction






data is of the form
d(t, s) = // e~ W(I=2Rsxl/€) A (. s, 2)dwV (x)dx =: F[V](t, s)
Cannot use far-field expansion as before

From d, want to reconstruct V.

e ( is an oscillatory integral, to which techniques of microlocal

analysis apply (F' is a Fourier Integral Operator )

e similar to seismic inversion problem (with constant background

but more limited data)

e d(t,s) depends on two variables.

Assume V(x) = V(x1,22) 0(x3 — h(x1,22)).
N —’
oground reflectivity tunction

o if A(w,s,x) =1, want to reconstruct V from its integrals over

spheres or circles (integral geometry problem)



Strategy for inversion scheme
G. Beylkin (JMP ’85)
Construct approximate inverse to F

Want B (relative parametrix) so that BF = I+(smoother terms)
Then image = Bd =~ BF|V| = V+(smooth error).

microlocal analysis =
a) method for constructing relative parametrix

b) theory = BF preserves singularities

“local” «+—— location of singularities
“micro” < orientation of singularities
singularities «—— high frequencies

basic tool is method of stationary phase



Construction of imaging operator

recall
d(s,t) ://ew(t2|RS"”|/C)A(w,s,m)de(z)dz

image= Bd where

Bd(z) = //6iw(t_2|R3’z|/C)Q(z,s,w)dw d(s,t)dsdt

where () is to be determined.
e B has phase of F* (L* adjoint)

e Compare:
— 1nverse Fourier transform

— 1nverse Radon transform

e This approach often results in exact inversion formula



Analysis of approximate inverse of F

I(z) :/ eW=2IRs2l/) (2 s w)dw d(s, t)dsdt
where () is to be determined below.

e Plug in expression for the data and do the ¢ integration:

I(z) = //ei%“RS’z'_RSv“’)QA(. ) dwds V(x)d*x

L —————
K(z,x)

point spread function

e Want K to look like a delta function
0z —x) = /ei(z_“’)"sdé

e Analyze K by the method of stationary phase



The Stationary Phase Theorem

Assume:
a 1s a smooth function of compact support

¢ has only non-degenerate critical points (where V¢ = 0, D?*¢ # 0)
Then as w — o0,

/ew‘b(w)a(a})d”x =

9.\ /2 ; piwd(x) i(m/4)sgnD? ¢ (x°)
Z Ly a(z”) 2 0
[20:V(x0)=0} > V| det D2¢(x0)]

—I-O(w_”/2_1)

D?¢ = Hessian
sgn = signature = (number of positive eigenvalues) —

(number of negative eigenvalues).



K(z,x) = /eiZk(|Rs’z|_|Rs’“’|)QA(. .. )dwds

main contribution comes from
critical points

|Ruz|=|Res
R.. 4(s) = Ros-A(s)

If K is to look like
6(z —x) = [eZ=2)Eq2¢,

we want critical points only when z = x.

Antenna beam
should illuminate only one of the critical
points = use side-looking antenna



K(z,x) = /ei%('RS’”_'RS’w')QA(. .)dwds
At critical point z = @:

1. Do Taylor expansion of exponent about z = x:

2k(|Rs 2| — |Rs.z|) = (z —x) - Z(x, 2, 5,w)

near z = x, =(x,z,s,w) ~ 2k[1§87z]T
2. Make (Stolt) change of variables

(s,w) — & =Z2(x, 2z, 5,w)

Then
K(z,x) = /ei(z—w)fQA(. ) 8(27&“)) d2€
——
Take @ = 1/(A [0(s,w)/0&]). !

Beylkin determinant.



Summary for single critical point at z =«

Form image by:

I(z) :/ eW(=2IRs21/) 0 (2 5, w)dw d(s, t)dsdt

where Q = |0&/0(s,w)|/A, § = Qk[ﬁs 2| T

Y

— point spread function is

K(Z,LB) _ / ei(z—m).gdZS
data maniftold

Implications
1. singularities appear in correct location, with correct orientation
2. resolution determined by data manifold:

bandwidth, antenna pattern, and flight path



A shortcoming of this approach

- continuum model avoids issues of range ambiguities and Doppler
ambiguities
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Figure 7.7 The ambiguity function of five coherent pulses (k=1 to,=02):
(a) 3-D view. (b) Contour plot.



source waveform SHOULD be a sequence of pulses
j(t, y) — Z]n(t — T, y) — Z / e_iw(t_Tn)Jn(wa y)dw

The transmitted (incident) field should be

- —zw(t—Tn—|a}—y\/co) j ;
(¢, n W, T,

= the scattered field is a sum over n = range ambiguities



reconstruction has Z rather than / .-+ ds = Doppler ambiguities

n
satellite systems use the antenna shape to avoid illuminating the

ambiguous points

Research question: Can we avoid range and Doppler ambiguities

by using mutually orthognal coding of successive pulses?

all shifts must be mutually orthogonal
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Resolution

Resolution is determined by region in &-space where we have data.

A

Recall: € ~ 2k|R; ;|7

Resolution via Fourier transforms

/b eip’r’dp _ 2 Sin br

—b T

corresponds to resolution 27 /b.



Along-track resolution

K(z,x) = /ei(z_w)'gdf with € ~ 2k[R, .] 7.

flight track v(s) = (0,5, H)

z—x = (0,29 — x2,0),

\

need only &>-range H

£y ~ kaQ_g(S)Q = £ 2(zo — 5) it

R=|z —(s)

But

2max |xo — s| = footprint width
_dnp_ 2R !

— effective length of the synthetic aperture

So max |&s] z% ZLI;T_LR _ 4%

So resolution in along-track direction is =7+ =

>0



Along-track resolution is L /2.
This 1s ...

e independent of range!
e independent of \!
e better for small antennas!

When a point z stays in the beam longer, the effective aperture for

that point is larger.

In range direction, want broad frequency band = get largest

coverage in &.
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To understand why singularities appear in correct location, with
correct orientation in the image, we need a little microlocal

analysis.



“Microlocal” study of singularities

Singularities in reflectivity «—  boundaries between different materials

singularities have both a location and a direction

(2, £) is not in the wavefront set of f if for some smooth cutoff

function ¢, the Fourier transtorm

[ f@o@)eeia

decays rapidly in a neighborhood of the direction &.

To determine whether (x°, £) is in the wavefront set:
1. localize around x"
2. Fourier transtform

3. look at decay in direction &



Example: a small “point” scatterer V(x) = §(x)

localize around any @ # 0 = ¢V = 0 (decays rapidly)
= (x,&) ¢ WF(9)

localize around € = 0 = ¢V =0 « | e'® &1 d¢
i.e., FV =1 (does not decay in any direction)

WF() ={(0,§) : all £ # 0}. (has singularities in all directions)



Example: a wall: V(x) =d(x V) x /ei"”’)pdp

localize around any point

x with - U # 0 = ¢V is smooth = Fourier

transform decays rapidly = (x,&) ¢ WF (V)
. 1 X vV

= FVie) = [oe o=

0 otherwise

singularity in the direction o
The Fourier transform does not

decay rapidly in direction v.



I(z) ~ /K(z,w) V(x)dx
where

K(z,x) = e!(Z=2) 8¢

/data manifold

is the kernel of a

pseudodifferential operator.

pseduodifferential operators have the

pseudolocal property:

e put singularities in the correct location
e do not change orientation of singularities

e singularities CAN disappear



The pseudolocal property
Example: V(x) = 6(x - ) oc [ e®Pdp

Then /K(z,w)&(a}-ﬁ)dw X /K(z,m)eim'pﬁdpdw

_ / =2 E (2 @ €)™ dedadp,

change variables & — p€
large-p stationary phase reduction in & and £

b6=pl(z—x)-E+x-D]
leading order contribution comes from:
dp/dé = x =2, do/de=0=E=v

(correct location) (correct orientation)

/K z,x)d(x - V)dr x /X(z,z,pﬁ)eiz'pﬁdp—k (smoother)

= singularities are microlocally correct



What about the extraneous critical points?

change of variables (s,w) — & can NOT be done.

stationary phase analysis at extraneous critical point =

K(z.z) ~ et /4 / 1 Az, s,2|Rs z|/co,w)
| - (27T)3/2 survey ‘w‘l/Q A(Z, S, 2 RS,Z‘/C()?("})

1 o€
|V 2(2, 2, 5) | O(s,w)

(2,2, s,w)dw

where s = s(z, x) satisfies criticality conditions

where ¢"" oc curvature of flight track

compare with

1 B
K ~
©2) % G [ By ot

= increasing curvature decreases artifact strength
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Understanding
SAR images

bu\‘ \Vana

216

| thical,lmége of Washington Monument

- | NearSide -
~_}. of Monument
1 (w.rt.eye)

'SARImage of Washington Monument

"SAR
@

T

Far Side
. of Monument
(w.rteye)

Figure 113 Principles of i_méging: (a) optical image of the Washington Monument; (b)

- SAR image of the monument.
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State of the Art

® motion compensation (autofocus algorithms)

® moving target indicator radar

® polarimetric SAR




® SAR interferometry

Washington, D.C. Mall Area

Elevation Model from Interferometric SAR
12 December, 1995

Time: 11:30pm
Conditions: Heavy Clouds

Compare this observed coseismic interferopram for the Landers earthoquake

1993 ] with the synthetic interferogram in Fig. 3.3h. One cycle of color

*presents 28 mm of change in mnge. Black segments depict the fault geo netry as mapped

in the field. Both this image and Fig. 3.3b cover a $-by-1 10-km area from April 24 1o
August 7, 1992

Rendering Viewed from West to East




--.______..-.- .

second pass:
measures phase { ¢, ) for
each pixel for time ( ¢, ) y

"":.!'.-'

+t'-'-",..-

) v
displacement:

pixel A moves about 1.5
wavelengths (~4.2 cm) s
toward the satellite, with p.hase { ‘TJ_"' -'f':fr each
respect to pixel 8 - pixel for time ( #; )

(] [
_ ey

measures reference

displacement toward satellite —»

Phase (0 ):
each color represents the
phase ( ¢ ) of a wave

INSAR image: ° :
._phasediffierence ( ¢ —dy ) for eact
o 1 g 1 ,,r 1 ‘!Iu'

displacement foward s:




SAR interferometry

Take j(t,y) = p(t)j(y) with p(t) = p(t)e™ """
prootis) = [[ e 0RO P) (s, )V ()

— / p(t — 2| R, o|/c)e”welt=2IReal/C) A(5 2 )V (x)da

~

use V(:B) = V(371,372)5(333 — h(xla@))

Write * = xp + hés with xp = (21,22, 0); use far-field expansion

R 2| = [z—7(s)| = [xr+hés—v(s)| = |[xr—7(s)|+hés - (xr —v(s)) + -

d(xT)

= Prec(t, s) = / Pt=2| Ry ey | fe)e™ e (2 Benr 19) A (5, @) | 2R (x01) | dPxr

This is signal that would have been obtained from a flat earth with

reflectivity function [e‘mkcd(XT)f/(XT)}



1. form two complex images of [G_Qikcd(zT)V(zT)}
in jth image, pixel at z7 is at range r; = |y, — zr|

the true range is R; = r; —d; =~ |v; — 2|




. form two complex images of |e2d(z1)V (z)
in jth image, pixel at zr is at range r; = |v; — z7|

the true range is R; = r; —d; = |v; — 2|

. co-register the images so that r;{ =
:>R2:R1—|—(d1—d2)

. multiply the complex conjugate of one image by the other —

complex image whose phase at zp is 2k.|d1(z1) — d2(z7)].
. solve phase unwrapping problem to get di(zr) — d2(z7)

. use the law of cosines to get the angle of elevation 6:

R = R? +b* — 2bR; cos(B + /2 — 0)

. height = H — Ry cosf
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Current research and open problems

e Waves that propagate through complex media

— foliage-penetrating SAR
x want bare earth topography
x find objects under trees

x estimate forest biomass, trunk volume, tree health
+ must (?7) use low frequencies =
- resolution is limited; how can we identify objects from
low-resolution images?
- antenna directivity is poor = left-right ambiguities
x vehicles parked near tree trunks = multiple scattering

— imaging through the ionosphere

— ground-penetrating radar (GPR or Gpen)

X 1ce

+ land mines, unexploded ordinance (UXO)



Are there vehicles
parked under the
trees!

Radar Shadow




x utility pipes, bridge decks

x earth is in near-field of antenna = antenna properties

change depending on what is in the earth

imaging in urban areas
multipath scattering, interference

through-the-wall imaging
hostage situations, urban warfare

polarimetric scattering in random media

dispersive media

e exploiting emerging radar capabilities

agile antennas

waveform design and scheduling
multistatic scenarios

sparse, random networks of antennas

swarms of UAVs

a



unattended ground sensors

sources of opportunity

staring radar

simultaneous tracking and imaging of moving targets

3D 1maging



Are there
cars driving
on these
streets?

Where are

they going!?

Can a
computer
track them?




Locate and image the moving objects




M-47 Tanks On Kirtland AFB

Comparison of Resolutions At Actual and 4x Enlarged Views
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e Image interpretation

— Thickness of ice, species of trees,

surface roughness, ...

— Automatic Target Recognition (ATR)
school bus or tank? identify airplanes

— Sensor fusion, use of multiple frequency bands

— Identification of singularities in bandlimited data or image

e Theoretical issues

— Reconstruction for full nonlinear inverse problem (avoid the

Born approximation!)

x limited aperture

* time domain (including dispersion!)
e Nonlinear calculus for singularities?

e Uniqueness theorem for backscattering



What information can we get from the image!

€S

f same scene at two different frequenc

image o
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Radar imaging is a field that is ripe for
mathematical attention!



