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The Incident Wave

The field from the antenna is E in, which satisfies

(∇2 − c−2∂2
t )E in(t, x) = j(t, x)

⇒

E in(t, x) =
∫

antenna

∫
e−iω(t−t′−|x−y|/c)

8π2|x− y| j(t′,y) dωdt′dy

=
∫

antenna

∫
e−iω(t−|x−y|/c)

8π2|x− y| J(ω, y) dωdy

where j = Fourier transform of J .
This model allows for:

• arbitrary waveforms, spatially distributed antennas

• array antennas in which different elements are activated with
different waveforms
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Let y = γ(s) + q, use far-field expansion: |q| << |Rs,x|⇒

|x− y| = |Rs,x − q| = |Rs,x|− R̂s,x · q + O(|Rs,x|−1)

⇒ E in(t, x) ≈
∫

e−iω(t−|Rs,x|/c)

8π2|Rs,x|

∫

antenna
e−ik dRs,x·q j(ω, q) dq

︸ ︷︷ ︸
F [J](ω,s,x)

dω

Antenna beam pattern at each frequency is Fourier transform of
(effective) current density on antenna
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=
∫∫

e−iω(t−2|Rs,x|/c)

32π3|Rs,x|2
F [J ](ω, s,x)F [W ](ω, s,x)dωV (x)dx

5

Putting it all together . . .

• Born approximation for Esc:

Esc(t, y) =
∫

e−iω(t−τ−|y−x|/c)

8π2|y − x| dωV (x)∂2
τE in(τ, s,x)dτdx

• Incident field is

E in(τ,x) ≈
∫

e−iω′(τ−|Rs,x|/c)

8π2|Rs,x|
F [J ](ω′, s, x) dω′

• Plug this in, use
∫

ei(ω−ω′)τdτ = 2πδ(ω − ω′) ⇒

Esc(t, y) =
∫∫

e−iω(t−|y−x|/c−|Rs,x|/c)

8π2|y − x|4π|Rs,x|
F [J ](ω, s,x)dωV (x)dx

• Use antenna reception model:

srec(t, s) =
∫ ∫

antenna
Esc(t− t′,γ(s)− y)W(t′,y)dydt′

4



Apply matched filter

output of correlation receiver is of the form

d(t, s) =
∫∫

e−iω(t−2|Rs,x|/c)A(ω, s,x)dωV (x)dx

A includes factors for:
1. geometrical spreading
2. antenna beam patterns
3. waveform sent to antenna

4



Spotlight SAR

2

1

x

x

data is of the form

d(t, s) =
∫∫

e−iω(t−2|Rs,x|/c)A(ω, s,x)dωV (x)dx

from d, want to reconstruct V .
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Fourier transform into frequency domain:

D(ω, s) =
∫

e2ik|Rs,x|A(ω, s,x)dωV (x)dx

Choose origin of coordinates in antenna footprint,
use far-field approximation
|γ(s)| >> |x| ⇒ Rs,x = |γ(s)− x| ≈ |γ(s)|− γ̂(s) · x + · · ·

D(ω, s) ≈ e2ik|γ(s)|
∫

e2ik dγ(s)·x A(ω, s,x)︸ ︷︷ ︸ V (x)dx

approximate by (function of ω, s) (function of x)

same as ISAR! use PFA
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1

x

x

Each view gives slices of the ground reflectivity function

Reconstruct a function from its integrals over lines 

in the time domain:

use FBP
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Stripmap SAR

7



Or



data is of the form

d(t, s) =
∫∫

e−iω(t−2|Rs,x|/c)A(ω, s,x)dωV (x)dx =: F [V ](t, s)

Cannot use far-field expansion as before
From d, want to reconstruct V .

• d is an oscillatory integral, to which techniques of microlocal
analysis apply (F is a Fourier Integral Operator )

• similar to seismic inversion problem (with constant background
but more limited data)

• d(t, s) depends on two variables.
Assume V (x) = Ṽ (x1, x2)︸ ︷︷ ︸ δ(x3 − h(x1, x2)).

ground reflectivity function

• if A(ω, s,x) = 1, want to reconstruct V from its integrals over
spheres or circles (integral geometry problem)

9



Strategy for inversion scheme

G. Beylkin (JMP ’85)

Construct approximate inverse to F

Want B (relative parametrix) so that BF = I+(smoother terms)
Then image = Bd ≈ BF [V ] = V +(smooth error).

microlocal analysis ⇒
a) method for constructing relative parametrix
b) theory ⇒ BF preserves singularities

“local” ←→ location of singularities
“micro” ←→ orientation of singularities
singularities ←→ high frequencies
basic tool is method of stationary phase

9



Construction of imaging operator

recall

d(s, t) =
∫ ∫

e−iω(t−2|Rs,x|/c)A(ω, s,x)dωV (z)dz

image= Bd where

Bd(z) =
∫ ∫

eiω(t−2|Rs,z|/c)Q(z, s, ω)dω d(s, t)dsdt

where Q is to be determined.

• B has phase of F ∗ (L2 adjoint)

• Compare:

– inverse Fourier transform

– inverse Radon transform

• This approach often results in exact inversion formula

12



Analysis of approximate inverse of F

I(z) =
∫

eiω(t−2|Rs,z|/c)Q(z, s, ω)dω d(s, t)dsdt

where Q is to be determined below.

• Plug in expression for the data and do the t integration:

I(z) =
∫ ∫

ei2k(|Rs,z|−|Rs,x|)QA(. . .) dωds
︸ ︷︷ ︸

K(z,x)

V (x)d2x

point spread function

• Want K to look like a delta function

δ(z − x) =
∫

ei(z−x)·ξdξ

• Analyze K by the method of stationary phase

13



The Stationary Phase Theorem

Assume:
a is a smooth function of compact support
φ has only non-degenerate critical points (where ∇φ = 0, D2φ "= 0)
Then as ω →∞,

∫
eiωφ(x)a(x)dnx =

∑

{x0:∇φ(x0)=0}

(
2π

ω

)n/2

a(x0)
eiωφ(x0)ei(π/4)sgnD2φ(x0)

√
| det D2φ(x0)|

+O(ω−n/2−1)

D2φ = Hessian
sgn = signature = (number of positive eigenvalues) −

(number of negative eigenvalues).
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K(z,x) =
∫

ei2k(|Rs,z|−|Rs,x|)QA(. . .)dωds

main contribution comes from
critical points

|Rs,z| = |Rs,x|
R̂s,z · γ̇(s) = R̂s,x · γ̇(s)

If K is to look like
δ(z − x) =

∫
ei(z−x)·ξd2ξ,

we want critical points only when z = x.

Antenna beam
should illuminate only one of the critical
points ⇒ use side-looking antenna

15



K(z,x) =
∫

ei2k(|Rs,z|−|Rs,x|)QA(. . .)dωds

At critical point z = x:

1. Do Taylor expansion of exponent about z = x:

2k(|Rs,z|− |Rs,x|) = (z − x) · Ξ(x,z, s, ω)

near z = x, Ξ(x,z, s, ω) ≈ 2k[R̂s,z]T

2. Make (Stolt) change of variables

(s,ω) → ξ = Ξ(x,z, s, ω)

Then
K(z,x) =

∫
ei(z−x)·ξQA(. . .)

∣∣∣∣
∂(s,ω)

∂ξ

∣∣∣∣
︸ ︷︷ ︸

d2ξ

Take Q = 1/(A |∂(s,ω)/∂ξ|). ↑
Beylkin determinant.
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Summary for single critical point at z = x

Form image by:

I(z) =
∫

eiω(t−2|Rs,z|/c)Q(z, s, ω)dω d(s, t)dsdt

where Q = |∂ξ/∂(s,ω)|/A, ξ = 2k[R̂s,z]T

⇒ point spread function is

K(z,x) =
∫

data manifold
ei(z−x)·ξd2ξ

Implications
1. singularities appear in correct location, with correct orientation
2. resolution determined by data manifold:

bandwidth, antenna pattern, and flight path
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A shortcoming of this approach

continuum model avoids issues of range ambiguities and Doppler
ambiguities

source waveform SHOULD be a sequence of pulses

j(t, y) =
∑

n

jn(t− Tn,y) =
∑

n

∫
e−iω(t−Tn)Jn(ω, y)dω

The transmitted (incident) field should be

Ein(t, x,y) ≈
∑

n

∫
e−iω(t−Tn−|x−y|/c0)

4π|x− y| Ĵn(ω, x,y)dω

⇒ the scattered field is a sum over n ⇒ range ambiguities

17
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reconstruction has
∑

n

rather than
∫

· · · ds ⇒ Doppler ambiguities

satellite systems use the antenna shape to avoid illuminating the
ambiguous points

Research question: Can we avoid range and Doppler ambiguities
by using mutually orthognal coding of successive pulses?

all shifts must be mutually orthogonal

18
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Resolution

Resolution is determined by region in ξ-space where we have data.

Recall: ξ ≈ 2k[R̂s,z]T

Resolution via Fourier transforms

∫ b

−b
eiρrdρ =

2 sin br

r

corresponds to resolution 2π/b.

20



Along-track resolution

H

z x
2 2

z
x

s

K(z,x) =
∫

ei(z−x)·ξdξ with ξ ≈ 2k[R̂s,z]T .

flight track γ(s) = (0, s, H)
z − x = (0,z2 − x2, 0),
need only ξ2-range

ξ2 ≈ 2k x2−γ(s)2
R = k

R 2(x2 − s)
R = |x− γ(s)|

But
2 max |x2 − s| = footprint width

= 4π
kLR = 2λ

L R

= effective length of the synthetic aperture

So max |ξ2| ≈ k
R

4πR
kL = 4π

L

So resolution in along-track direction is 2π
4π/L = L

2

21



Along-track resolution is L/2.

This is ...

• independent of range!

• independent of λ!

• better for small antennas!

When a point z stays in the beam longer, the effective aperture for
that point is larger.

In range direction, want broad frequency band ⇒ get largest
coverage in ξ.

18
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To understand why singularities appear in correct location, with
correct orientation in the image, we need a little microlocal
analysis.

22



“Microlocal” study of singularities

Singularities in reflectivity ←→ boundaries between different materials

singularities have both a location and a direction

(x0, ξ) is not in the wavefront set of f if for some smooth cutoff
function φ, the Fourier transform

∫
f(x)φ(x)eiξ·xdx

decays rapidly in a neighborhood of the direction ξ.

To determine whether (x0, ξ) is in the wavefront set:

1. localize around x0

2. Fourier transform

3. look at decay in direction ξ

19



Example: a small “point” scatterer V (x) = δ(x)

localize around any x != 0⇒ φV ≡ 0 (decays rapidly)
⇒ (x, ξ) /∈WF (δ)

localize around x = 0⇒ φV = δ ∝
∫

eix·ξ1dξ

i.e., FV = 1 (does not decay in any direction)

WF (δ) = {(0, ξ) : all ξ != 0}. (has singularities in all directions)

20



!
"

Example: a wall: V (x) = δ(x · ν̂) ∝
∫

eix·ν̂ρdρ

localize around any point
x with x · ν̂ "= 0⇒ φV is smooth ⇒ Fourier
transform decays rapidly ⇒ (x, ξ) /∈WF (V )

⇒ FV (ξ) =
∫

δ(ξ − ν̂ρ)dρ =
{

1 ξ ∝ ν̂

0 otherwise

singularity in the direction ν̂

The Fourier transform does not
decay rapidly in direction ν̂.

21



I(z) ∼
∫

K(z,x) V (x)dx

where

K(z,x) =
∫

data manifold
ei(z−x)·ξdξ

is the kernel of a
pseudodifferential operator.

pseduodifferential operators have the
pseudolocal property:
WF (Ku) ⊆WF (u)

• put singularities in the correct location

• do not change orientation of singularities

• singularities CAN disappear

27



∫
K(z,x)δ(x · ν̂)dx ∝

∫
χ(z,z, ρν̂)eiz·ρν̂dρ + (smoother)

⇒ singularities are microlocally correct

24

The pseudolocal property

Example: V (x) = δ(x · ν̂) ∝
∫

eix·ν̂ρdρ

Then
∫

K(z,x)δ(x · ν̂)dx ∝
∫

K(z,x)eix·ρν̂dρdx

=
∫

ei(z−x)·ξχ(z,x, ξ)eix·ρν̂ dξdxdρ,

change variables ξ → ρξ̃

large-ρ stationary phase reduction in x and ξ̃

φ = ρ[(z − x) · ξ̃ + x · ν̂]

leading order contribution comes from:

dφ/dξ̃ ⇒ x = z, dφ/dx = 0⇒ ξ̃ = ν̂

(correct location) (correct orientation)

23



What about the extraneous critical points?

change of variables (s,ω)→ ξ can NOT be done.

stationary phase analysis at extraneous critical point ⇒

K(z,x) ≈ eiπ/4

(2π)3/2

∫

survey

1
|ω|1/2

A(x, s, 2|Rs,x|/c0,ω)
A(z, s, 2|Rs,z|/c0,ω)

· 1
|φ′′|1/2(z,x, s)

∣∣∣∣
∂ξ

∂(s,ω)

∣∣∣∣ (z,z, s, ω)dω

where s = s(z,x) satisfies criticality conditions
where φ′′ ∝ curvature of flight track

compare with

K(x,x) ≈ 1
(2π)2

∫

survey

∣∣∣∣
∂ξ

∂(s,ω)

∣∣∣∣ (x,x, s, ω)dωds

⇒ increasing curvature decreases artifact strength

29
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Understanding
 SAR images
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State of the Art
• motion compensation (autofocus algorithms)

• moving target indicator radar

• polarimetric SAR



• SAR interferometry





SAR interferometry

Take j(t, y) = p(t)j̃(y) with p(t) = p̃(t)e−iωct

prec(t, s) =
∫∫

e−iω(t−2|Rs,x|/c)P (ω)Ã(s,x)dωV (x)dx

=
∫

p̃(t− 2|Rs,x|/c)e−iωc(t−2|Rs,x|/c)Ã(s,x)V (x)dx

use V (x) = Ṽ (x1, x2)δ(x3 − h(x1, x2))

Write x = xT + hê3 with xT = (x1, x2, 0); use far-field expansion

|Rs,x| = |x−γ(s)| = |xT +hê3−γ(s)| = |xT−γ(s)|+hê3 · ̂(xT − γ(s))︸ ︷︷ ︸
d(xT )

+ · · ·

⇒ prec(t, s) =
∫

p̃(t−2|Rs,xT |/c)e−iωc(t−2|Rs,xT
|/c)Ã(s,x)

[
e−2ikcd(xT )Ṽ (xT )

]
d2xT

This is signal that would have been obtained from a flat earth with
reflectivity function

[
e−2ikcd(xT )Ṽ (xT )

]
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1. form two complex images of
[
e−2ikcd(zT )Ṽ (zT )

]

in jth image, pixel at zT is at range rj = |γj − zT |
the true range is Rj = rj − dj ≈ |γj − z|

2. co-register the images so that r1 = r2

⇒ R2 = R1 + (d1 − d2)

3. multiply the complex conjugate of one image by the other →
complex image whose phase at x is 2kc[d1(x)− d2(x)].

4. solve phase unwrapping problem to get d1(x)− d2(x)

5. use the law of cosines to get the angle of elevation θ:

R2
2 = R2

1 + b2 − 2bR1 cos(β + π/2− θ)

33
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Current research and open problems

• Waves that propagate through complex media

– foliage-penetrating SAR
∗ want bare earth topography
∗ find objects under trees
∗ estimate forest biomass, trunk volume, tree health
∗ must (?) use low frequencies ⇒

· resolution is limited; how can we identify objects from
low-resolution images?

· antenna directivity is poor ⇒ left-right ambiguities
∗ vehicles parked near tree trunks ⇒ multiple scattering

– imaging through the ionosphere

– ground-penetrating radar (GPR or Gpen)
∗ ice
∗ land mines, unexploded ordinance (UXO)

31



Are there vehicles
parked under the

trees?



∗ utility pipes, bridge decks
∗ earth is in near-field of antenna ⇒ antenna properties

change depending on what is in the earth
– imaging in urban areas

multipath scattering, interference
– through-the-wall imaging

hostage situations, urban warfare
– polarimetric scattering in random media
– dispersive media

• exploiting emerging radar capabilities
– agile antennas

waveform design and scheduling
– multistatic scenarios
– sparse, random networks of antennas
– swarms of UAVs

32



– unattended ground sensors

– sources of opportunity

– staring radar

– simultaneous tracking and imaging of moving targets

– 3D imaging

33



Are there
cars driving

on these 
streets?

Where are
they going?

Can a 
computer

track them?



Locate and image the moving objects





• Image interpretation

– Thickness of ice, species of trees,
surface roughness, . . .

– Automatic Target Recognition (ATR)
school bus or tank? identify airplanes

– Sensor fusion, use of multiple frequency bands

– Identification of singularities in bandlimited data or image

• Theoretical issues

– Reconstruction for full nonlinear inverse problem (avoid the
Born approximation!)
∗ limited aperture
∗ time domain (including dispersion!)

• Nonlinear calculus for singularities?

• Uniqueness theorem for backscattering

34



What information can we get from the image?

image of same scene at two different frequencies



Where should
a ship sail 

to get through
the ice?



Radar imaging is a field that is ripe for 
mathematical attention!


