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Vector and scalar electromagnetic potentials

∇× E = −∂tB (1)

∇×H = J + ∂tD (2)

∇ · D = ρ ∇ · B = 0 ⇒ B = ∇×A (3)

↑
vector potential

(1) ⇒ ∇× E + ∂t∇×A = 0 ⇒ ∇× (E + ∂tA) = 0
⇒ E + ∂tA = −∇φ

↑
scalar potential

plug into (2), use B = µ0H,D = ε0E ⇒
1

µ0
∇× (∇×A)︸ ︷︷ ︸
∇(∇·A)−∇2A

= J − ∂tε0(∇φ + ∂tA) ⇒
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∇2A− µ0ε0∂
2
t A +

[
∇(∇ · A) + µ0ε0∂t∇φ

]
= −µ0J

A and Φ are not unique!

We get the same B,E,H,D if

{ A→ A +∇Ψ
φ→ φ− ∂tΨ

gauge invariance

Two commonly used gauges:{
∇ · A + µ0ε0∂tφ = 0 Lorentz gauge

∇ · A = 0 Coulomb gauge

We use the Lorentz gauge to obtain

∇2A− µ0ε0∂
2
t A = −µ0J

in frequency domain: ∇2A + k2A = −µ0J
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Strategy (frequency domain)

1. model antenna as current density J

2. solve ∇2A + k2A = −µ0J forA:

A(x) =
∫

eik|x−y|

4π|x− y|µ0J(y)dy ≈ eik|x|

4π|x|µ0

∫
e−ikx̂·yJ(y)dy

︸ ︷︷ ︸
F (kx̂)=F [J ](kx̂)

3. recall that E = iωA−∇Φ and the Lorentz gauge condition is
iωΦ = c2

0∇ · A ⇒

E = iω

(
A− c2

0∇(∇ · A)
(iω)2

)
= iω

[
A + k−2∇(∇ · A)

]

4. compute E using far-field approximation

use expressions for ∇ and ∇· in spherical coordinates
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A(x) ≈ eik|x|

4π|x|µ0F (kx̂)

E = iω

[
A +

1
k2
∇(∇ · A)

]

= iωµ0
eik|x|

4π|x|

[
F +

1
k2

(ikx̂(ikx̂ · F ))
]

+ O
(

1
(k|x|)2

)

E(x) = iωµ0
eik|x|

4π|x| [F − x̂(x̂ · F )] + O
(

1
(k|x|)2

)

A× (B ×C) = B(A · C)−C(A · B)⇒

E(x) = −iωµ0
eik|x|

4π|x| [x̂× (x̂× F )] + O
(

1
(k|x|)2

)
Note E ⊥ x̂
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Example: uniform current density on a line

F (kx̂) =
∫ a

−a
e−ikx̂·(sê)Iêds = Iê

e−ikax̂·ê − eikax̂·ê

ikx̂ · ê

= −Iê
2i sin(kax̂ · ê)

ikx̂ · ê
= −2aIê sinc(kax̂ · ê)

width of main lobe is obtained from ka x̂ · ê︸︷︷︸
sin θ

= π

(θ measured from normal)

If sin θ ≈ θ, then beamwidth is

≈ 2π

ka
=

2π

(2π/λ)a
=

λ

a
=

2
number of wavelengths that fit on antenna

(
k =

ω

c
and ν =

c

λ
⇒ k =

2π

λ

)
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Example: uniform current density on a rectangle

F (kx̂) =
∫ a

−a

∫ b

−b
e−ikx̂·(s1ê1+s2ê2)I ds1ds2

= I (2b sinc(kbx̂ · ê1)) (2a sinc(kax̂ · ê2))

Phased arrays

Take J(k, y) = Ieikµ̂·y for y = s1ê1 + s2ê2

(phase depends on position):

F (kx̂) =
∫ a

−a

∫ b

−b
e−ik(x̂−µ̂)·(s1ê1+s2ê2)I ds1ds2

same as above, but beam points in direction x̂ = µ̂.

Electronically Steered Array (ESA)
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Key features of antenna beam

• Main lobe of beam is perpendicular to antenna

• Antenna has length L = 2a⇒
Angular width of main lobe ≈ 4π

kL = 2λ
L

⇒ width of antenna footprint = 4π
kLR = 2λ

L R.

• Get a more focused beam with:
— bigger antenna

— higher frequency
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= I (2b sinc(kbx̂ · ê1)) (2a sinc(kax̂ · ê2))

Phased arrays

Take J(k, y) = Ieikµ̂·y for y = s1ê1 + s2ê2
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Real-Aperture Imaging

• Use big antenna or high frequencies to form small spot on ground

• Scan the spot over the ground

• For each spot position on a map, assign a color corresponding to the
amplitude of the received energy

Synthetic-Aperture imaging

• Use a smaller antenna

• Illuminate same region from different antenna locations γ(s)

• Use mathematics to form high-resolution image
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An array of point antennas

F (kx̂) = I
N−1∑

j=0

∫
e−ikx̂·yδ(y − djê)dy = I

N−1∑

j=0

e−ikx̂·êdj

=
1− eikdNx̂·ê

1− eikdx̂·ê =
eikdNx̂·ê/2

eikdx̂·ê/2

[
sin(kdx̂ · êN/2)
sin(kdx̂ · ê/2

]

︸ ︷︷ ︸
array factor

periodic with period kdx̂ · ê = 2π ⇒ grating lobes (extra main lobes)

when kd is sufficiently big

(an issue for sparse apertures)
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Far-field expansion when antenna is at γ(s)

Center of antenna is at γ(s)
Point on antenna is y = γ(s) + q

x is on the ground

|x− y| = | x− γ(s)︸ ︷︷ ︸
Rs,x

+γ(s)− y︸ ︷︷ ︸
−q

| = |Rs,x − q|

|q| << |Rs,x|⇒
|Rs,x − q| = |Rs,x|− R̂s,x · q + O(|Rs,x|−1)
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Field from antenna at γ(s)

x̂→ R̂s,x ⇒ F (kx̂)→ F (kR̂s,x) =
∫

eikR̂s,x·qJ(ω, s, q)dq

E(ω, x) ≈ − iωµ0

4π

eik|Rs,x|

|Rs,x|

[
F − R̂s,x

(
R̂s,x · F

)]

We will use a scalar model: E(ω, x) ≈ − iωµ0

4π

eik|Rs,x|

|Rs,x| F
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Vector model Scalar model

∇2A− µ0ε0∂2
t A = −µ0J ∇2E − µ0ε0∂2

t E = µ0∂tJ =: j

∇2A + k2A = −µ0J ∇2E + k2E = −iωµ0J

A(ω, x) =
∫

eik|x−y|

4π|x−y|µ0J(ω, y)dy E(ω, x) =
∫

eik|x−y|

4π|x−y| (iωµ0)J(ω, y)dy

E = iω
[
A + k−2∇(∇ · A)

]

E(x) ≈ iωµ0
eik|x|

4π|x| [F − x̂(x̂ · F )] E(x) ≈ iωµ0
eik|x|

4π|x| F

F (kx̂) =
∫

e−ikx̂·yJ(ω, y)dy F (kx̂) =
∫

e−ikx̂·yJ(ω, y)dy
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Antenna reception

srec(t) =
∫ ∫

antenna
Esc(t− t′,x0 − y)W(t′,y)︸ ︷︷ ︸ dydt′

weighting factor depending on antenna shape

in the frequency domain:

Srec(ω) =
∫

antenna
Esc(ω, x0 − y)W (ω, y)dy

=
∫ ∫

eik|x0−y−z|

4π|x0 − y − z|V (z)E(ω, z)dzW (ω, y)dy

use far-field expansion for |x0 − z| >> |y|:

Srec(ω) ≈
∫

eik|x0−z|

4π|x0 − z|V (z)E(ω, z)dz

∫
e−ikx̂0−z·yW (ω, y)dy

︸ ︷︷ ︸
F [W ](ω,x̂0−z)
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Antenna research questions

• How can antennas be designed to achieve certain desired
far-field patterns?
Antennas must be possible to manufacture and feed.
Ideally antennas should be small.

• What can be done with array antennas in which each element
is activated with a different waveform? What can be done with
distributed networks of antennas?

• Is it possible to send a message only to a desired location, and
send different messages in other directions? (Applications to
secure wireless communications)
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