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3D Mathematical Model

• We should use Maxwell’s equations;
but instead we use

(
∇2 − 1

c2(x)
∂2

t

)
E(t, x) = j(t, x)︸ ︷︷ ︸

source

• Scattering is due to a perturbation in the wave speed c:

1
c2(x)

=
1
c2
0

− V (x)︸ ︷︷ ︸

reflectivity function

• For a moving target, use V (x, t).
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Basic facts about the wave equation

• fundamental solution g
(
∇2 − c−2

0 ∂2
t

)
g(t, x) = −δ(t)δ(x)

g(t, x) =
δ(t− |x|/c0)

4π|x| =
∫

e−iω(t−|x|/c0)

8π2|x| dω

• g(t, x) = field at (t, x) due to a source at the origin at time 0

• Solution of (
∇2 − c−2

0 ∂2
t

)
u(t, x) = j(t, x),

is

u(t, x) = −
∫

g(t− t′,x− y)j(t′,y)dt′dy

• frequency domain: k = ω/c0

(∇2 + k2)G = −δ G(ω, x) =
eik|x|

4π|x|
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Introduction to scattering theory

(
∇2 − c−2(x)∂2

t

)
E(t, x) = j(t, x)

(∇2 − c−2
0 ∂2

t )E in(t, x) = j(t, x)

write E = E in + Esc, c−2(x) = c−2
0 − V (x), subtract:

(
∇2 − ∂2

t

)
Esc(t, x) = −V (x)∂2

t E(t, x)

use fundamental solution ⇒

Esc(t, x) =
∫

g(t− τ,x− z)V (z)∂2
τE(τ,z)dτdz.

Lippman-Schwinger integral equation

frequency domain Lippman-Schwinger equation:

Esc(ω, x) = −
∫

G(ω, x− z)V (z)ω2E(ω, z)dz

4



single-scattering or Born approximation

Esc(t, x) ≈ Esc
B :=

∫
g(t− τ,x− z)V (z)∂2

τE in(τ,z)dτdz

useful: makes inverse problem linear

not necessarily a good approximation!

In the frequency domain,

Esc
B (ω, x) = −

∫
eik|x−z|

4π|x− z|V (z)ω2Ein(ω, z)dz
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Ein is obtained by solving (∇2 + k2)Ein = J

For now, suppose J(ω, x) = P (ω)δ(x− x0) ⇒

Ein(ω, x) = −
∫

G(ω, x− y)P (ω)δ(y − x0)dt′dy = −P (ω)
eik|x−x0|

4π|x− x0|

Then the scattered field back at x0 is

Esc
B (ω, x0) = P (ω) ω2

∫
e2ik|x0−z|

(4π)2|x0 − z|2 V (z)dz

In the time domain this is

Esc
B (t, x0) =

∫
e−iω(t−2|x0−z|/c)

2π(4π|x0 − z|)2 k2P (ω)V (z)dωdz

Note 1/R2 geometrical decay ⇒ power decays like 1/R4

6



Matched filtering

η(t, x0) ≈
∫

p∗(t′ − t)Esc
B (t′,x0)dt′

=
∫ (

1
2π

∫
eiω′(t′−t)P (ω′)dω′

)

·
∫

e−iω(t′−2|x0−z|/c)

2π(4π|x0 − z|)2 k2P (ω)V (z)dωdz dt′

... do t′ and ω′ integrations

=
∫

e−iω(t−2|x0−z|/c)

2π(4π|x0 − z|)2 k2|P (ω)|2V (z)dωdz

Effect of matched filter is to replace P (ω) by |P (ω)|2.
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Far-field expansion

|z| << |x0| ⇒ |x0 − z| = |x0|− x̂0 · z + O(|x0|−1)

where x̂ = x/|x|

Proof:

|x0 − z| =
√

(x0 − z) · (x0 − z) =
√

|x0|2 − 2x0 · z + |z|2

= |x0|
√

1− 2 x0·z
|x0|2 + |z|2

|x0|2 use
√

1− a = 1− a
2 + · · ·

= |x0|
(

1− x̂0 · z

|x0| + O(|x0|−2)

)

= |x0|− x̂0 · z + O

(
|z|
|x0|

)

Note: Whether |z| << |x0| depends on location of origin of coordinates.

eik|x0−z|

|x0 − z| =
eik|x0|

|x0| e−ikcx0·z
(

1 + O

(
|z|
|x0|

)) (
1 + O

(
k|z|2

|x0|

))
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Far-field approximation to data

applies to smallish target

(Born-approximated) output of correlation receiver is:

ηB(t, x0) =
∫

e−iω(t−2|x0−z|/c)

2π(4π|x0 − z|)2 k2|P (ω)|2V (z)dωdz

put origin of coordinates in target, use far-field expansion ⇒

ηB(t, x0) ≈ 1
32π2|x0|2

∫
e−iω(t−2|x0|/c+2cx0·z/c)k2|P (ω)|2V (z)dωdz

in the frequency domain:

DB(ω, x0) ≈ e2ik|x0|

32π2|x0|2 k2|P (ω)|2
∫

e2ikcx0·zV (z)dz
︸ ︷︷ ︸

F [V ](2kcx0) !
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Airborne targets
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Inverse Synthetic Aperture Radar (ISAR)

• fixed radar, moving target (usually airplane or ship)

• transmit pulse train

• typical pulse length ≈ 10−4 sec,

rotation rate Ω = 10◦/sec ≈ 1/6 R/sec, target radius ≈ 10m⇒
distance traveled during pulse ≈ 10−4m⇒ start-stop approximation

• for airborne target, measurements from nth pulse contain no

reflections from earlier pulses

• take out translational motion via tracking and range alignment,
leaving only rotational motion
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Range alignment
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ISAR vs SAR
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Mathematics of ISAR

at start of nth pulse, V (x) = q(O(θn)x) where O is an orthogonal matrix

For example: if radar is in plane ⊥ to axis of rotation (“turntable
geometry”),

O(θ) =





cos θ − sin θ 0

sin θ cos θ 0

0 0 1





DB(ω, θn) ≈ e2ik|x0|

32π2|x0|2 k2|P (ω)|2
∫

e2ikcx0·zq(O(θn)z︸ ︷︷ ︸
y

)dz

( use x0 · O−1(θn)y = O(θn)x0 · y)

=
e2ik|x0|

32π2|x0|2 k2|P (ω)|2
∫

e2ik O(θn)cx0·yV ( y)dy
︸ ︷︷ ︸

F [q](2kO(θn)cx0) !
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Region in Fourier space where we have data

  

The backhoe data dome Ω (turntable geometry)
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Polar Format Algorithm (PFA)

applies to turntable geometry, frequency-domain data

1. interpolate to rectangular grid

2. use 2D Fast Fourier Transform
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An ISAR image of a Boeing 727 taking off from LAX
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Mir







ISAR Resolution – Notation

Assume turntable geometry

Take x0 = (1, 0, 0), write êθ = O(θ)x0.

D̃(k, θ) =
∫

e−2ik(y1 cos θ+y2 sin θ)q(y1, y2, y3)dy1dy2dy3
∫

e−2ik(y1 cos θ+y2 sin θ)

∫
q(y1, y2, y3)dy3

︸ ︷︷ ︸
q̃(y1,y2)

dy1dy2

get 2D image of q̃ = target projected onto plane containing radar
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ISAR Resolution, continued

D̃(k, θ) = χΩ(kêθ)F [q](kêθ)

to form image, take 2D inverse Fourier transform

I(x) =
∫

eix·kêθD̃(k, θ)kdkdθ =
∫

eix·kêθ

∫

Ω
e−iy·kêθ q̃(y)dykdkdθ

=
∫ ∫

Ω
ei(x−y)·kêθkdkdθ

︸ ︷︷ ︸
K(x− y)

q̃(y)d2y

↑
point spread function (PSF), imaging kernel, ambiguity function
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ISAR Resolution: analysis of PSF

K(z) =
∫

Ω
eiz·kêθkdkdθ

Take êθ = (cos θ, sin θ) ≈ (1, θ) (small-angle approx.)
z = r(cos ψ, sinψ) b = k2 − k1 kc = ωc/c

Down-range resolution

K(r, 0) ≈ 2Φ
i

d

dr

[
eikcr b

2
sinc(br/2)

]

K(r, 0) ≈ bωcΦ eikcrsinc
br

2
down-range resolution is 4π/b

note oscillatory factor
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Cross-range Resolution

K(0, r) ≈ 2bkcΦ sinc
(

brΦ
2

)
sinc(kcrΦ)

kc " b ⇒

K(r, 0) ≈ 2bkcΦ sinc(kcrΦ)

cross-range resolution is 2π/(kcΦ)
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ISAR in the time domain

DB(ω, θn) ≈ e2ik|x0|

32π2|x0|2 k2|P (ω)|2
∫

e2ik O(θn)cx0·yq( y)dy
︸ ︷︷ ︸

F [q](2kO(θn)cx0)' Fourier transform

ηB(t, θn) ∝
∫ ∫

e−iω(t−2|x0|/c+2O(θn)cx0·y/c)ω2|P (ω)|2dω q(y)dy

ηB

(
t +

2|x0|
c

, θn

)
=

∫ ∫
e−iω(t+

−τ︷ ︸︸ ︷
2O(θn)x0 · y/c)ω2|P (ω)|2dω

︸ ︷︷ ︸
R

δ(s−τ)

∫
e−iω(t−s)ω2|P (ω)|2dω

︸ ︷︷ ︸
χ(t−s)

ds

q(y)dy
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ηB

(
t +

2|x0|
c

, θn

)
=

∫
χ(t− s)

∫
δ

(
s− 2O(θn)x̂0

c
· y

)
q(y)dy

︸ ︷︷ ︸
R[q]

„
s, 2O(θn)dx0

c

«

ds

= χ ∗R[q]

(
2O(θn)x̂0

c

)

whereR[q](s, µ̂) =
∫

δ(s− µ̂ · x)q(x)dx is the Radon transform

For ISAR, use waveform so that χ ≈ δ (high range-resolution waveform)
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Radon transform

Rbµ[q](s) = R[q](s, µ̂) =
∫

δ(s− µ̂ · x)q(x)dx =
∫

s=bµ·x
q(x)dnx

=
∫

x′⊥bµ
q(sµ̂ + x′)dn−1x′

Properties

• Projection-slice theorem:

Fs→σ(Rbµ[f ])(σ) = (2π)(n−1)/2Fn[f ](σµ̂)

↑ ↑
1D Fourier transform nD Fourier transform

here Fourier transforms have symmetric 1/
√

2π convention
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• Filtered backprojection (FBP):

(R#h) ∗ f = R#(h ∗R[f ])

↗ ↑
backprojection operator filter

whereR# operates on h(s,µ) via

(R#h)(x) =
∫

Sn−1
h(x · µ̂, µ̂)dµ̂

– R# integrates over part of h corresponding to all lines through x

– R# is the formal adjoint ofR, i.e.,
〈Rf, h〉L2(R×Sn−1) = 〈f,R#h〉L2(Rn)
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Radon transform
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ISAR summary

• use high range-resolution waveform (broad frequency band)

• time-domain formulation gives rise to Radon transform
– invert via FBP or . . .

• frequency-domain formulation gives Fourier transform of target on
polar grid

– interpolate to cartesian grid, use FFT

• can make images from an aperture of a few degrees because of high
carrier frequency

ISAR is sometimes called range-doppler imaging

Doppler shift can be inferred from phase of successive measurements
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Where more work is needed on ISAR

• model; Born approximation leaves out:
– multiple scattering

– shadowing

– creeping waves

• find target/sensor motion

• 3D imaging

• template library look-up

• fast algorithms
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