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Abstract. This paper addresses the scattering of acoustic and electromagnetic waves from a 
permrbed dissipative half-space. For simplicily, the perturbation is assumed to have compact 
support. Section 1 discusses the application that motivated this work and explains how the scalar 
model used here is related to Maxwell's equations. Section 2 introduces three formulations for 
direct and inverse problems for the half-space geometry. Two of these formulations relare to 
scattering problems, and the third to a boundary value problem. Section 3 shows how the 
scattering problems can be related to the boundary value problem. This shows that the three 
inverse problems are equivalent in B certain sense. In section 4, the boundary value problem 
is used to outline a simple way to formulate a multi-dimensional layer stripping procedure. 
This procedure is unstable and does not constitute a practical algorithm for solving the inverse 
problem. The paper concludes with t h e  appendices, the fint two of which carry out a careful 
construction of solutions of the direct problem and the third of which contains a discussion of 
some properties of the scattering operator. 

1. Introduction 

This work is motivated by the problems encountered in using radar as a geophysical probe. 
For these applications, the radar antenna is positioned above the earth, often on a satellite 
(Elachi 1988), an airplane, or a tall gantry. In many cases it is reasonable to approximate 
the earth as an infinite half-space x3 < 0. The upper half-space is assumed to be composed 
of dry air, whose electromagnetic characteristics we assume to be those of free space (i.e. 
vacuum). Electromagnetic measurements are made in the upper half-space and, from these 
measurements, one hopes to reconstruct the electromagnetic characteristics of the lower 
half-space. 

In this paper we consider a simplified scalar model that includes not only the variable 
speed of wave propagation but also the dissipation. This model is also appropriate for 
acoustic wave propagation. 

The propagation of electromagnetic waves is governed by Maxwell's equations, which 
we write in the form 

V A  E =iu+H (1.1) 

v A H = (U - io€)E. (1.2) 

Here E is the electric field, H the magnetic field, E the electric permittivity, fi the magnetic 
permeability, and U the conductivity. These equations are obtained from the time-dependent 
equations by assuming a time dependence of e-'"'. We will take CO to be positive throughout. 

In many cases'of interest, the magnetic permeability is very close to the permeability 
of free space; accordingly we assume fi = If we write out the six scalar equations of 
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(1.1) and (1.2), and assume that E ,  U ,  E ,  and H are independent of one of the coordinates, 
say X Z ,  then we find that the six equations decouple into two sets of equations, one set 
for HI, Ez,  and H3, and the other set for E l ,  Hz, and E3. These determine independent 
polarizations, the former called the transverse electric (?E) polarization and the latter called 
the transverse magnetic (TM) polarization (Jackson 1975). 
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The equations for the TE polarization reduce to 

(0' + o'fio~ + iopou)Ez = o (1.3) 

where the Laplacian is a two-dimensional one in the X I  and x3 variables. We assume that 
the upper half-space (x3 > 0) is air, which we approximate by the same electromagnetic 
parameters as free space, namely E = €0, U = 0. We will write k = o/cg, where 
CO = (p~<o)- ' /~ ' i s  the speed of light in free space. We will consider only k positive. 
In addition, we write nz = € / E O  and m = U-. With this notation, (1.3) becomes 

(Vz+ k2n2 4- ikm)E = 0 ( 1.4) 

where we have dropped the subscript on E .  
In what follows, we will develop the theory for (1.3) and (1.4) when the Laplacian is 

a three-dimensional one: the theory for the two-dimensional case is similar. Both nz and 
m are assumed non-negative. We assume that nz is identically one in the upper half-space 
and, in the lower half-space, n2 differs from a positive constant n? only in a region of 
compact support. Similarly m is identically zero in the upper half-space, and in the lower 
half-space differs from a positive constant m- only in a region of compact support. These 
assumptions are meant to include the case of an ice floe in sea water. The parameter values 
for sea ice in the gigahertz range are between 3 and 4 for n2 and around 6 for m. For 
sea water, n? is 3.37, and the value of m- is around 7000 m-l (Carsey 1992). We will 
write x = (XI. X Z ,  x3) = (x', x,). 

The arguments given here would need to be modified in order to apply to cases when 
the background medium has more layers, and for the case ,when the perturbation extends 
into the upper half-space. 

The theory of scattering from a half-space for (1.4) in the non-dissipative case (m = 0) 
has been developed in Wilcox (1984). Dermenjian and Guillot (1986, 1988). Weder (1991) 
and Xu (1992). The layered problem has been investigated by many investigators. In 
particular, the papers Chaderjian (1989, 1994), Marechal (1986) and Kristensson and 
Krueger (1989) show that backscattered data from a single incident plane wave suffice 
to determine both n2 and m only if nz and m have a jump discontinuity. An abstract 
formulation of scattering for dissipative hyperbolic systems has been given in Lax and 
Phillips (1973). 

2. Formulation of three inverse problem 

When a layered half-space is perturbed, some thought must be given to the formulation 
of the direct and inverse scattering problems. For the direct problem, one commonly-used 
approach (Tsang et al 1985) is to assume an incident plane wave and then use a half-space 
or layered-medium Green's function to set up an integral equation. The solution of this 
integral equation defines the scattering solution, whose far-field asymptotics are taken to 
be the scattering data. Inverse problems involve using this scattering data to determine 
perturbations in the medium. 
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One problem with this approach is that, in practice, the incident field is never infinite 
in extent. This is unimportant if energy from infinity has no effect on the scattering, but 
for some layered medium problems this may not be the case. One can avoid this difficulty 
by multiplying the incident field by a cut-off function meant to model the antenna beam 
pattern, but the form of this cut-off function certainly does affect the scattering, and it is 
difficult to find a simple way to retain the information about the incident field in the far-field 
pattern. One approach to this is in Gilbert and Xu (1992). Below some-other methods are 
suggested. 

2. I .  The direct and inverse scattering problem 

For any incident field, solutions to the direct scattering problem can be constructed in the 
usual way by converting the, differential equation (1.4) to an integral equation that builds 
in the boundary conditions at infinity. The kernel of this integral equation is a Green's 
function for the unperturbed problem with outgoing boundary conditions. The details are 
given in appendix 1. 

To define scattering data, we consider the field E in the.upper half-space. We define 
the scattering operator S to be the map from the downgoing part of the wavefield to the 
upgoing part. We conshuct an explicit representation s of this map in the Fourier transform 
domain. In particular, we use the fact that the medium parameters are known and constant 
in the upper half-space. For x3 positive, one can therefore Fourier transform (1.4) in the X I  

and xz coordinates. The result is an ordinary differential equation whose general solution 
for x3 > 0 is 

where h, = d m  and the hat denotes the two-dimensional Fourier transform 

x' denoting ( X I ,  xz).  When A+ is zero, the general solution corresponding to (2.1) is simply 
a constant. When < k ,  the B term in (2.1) is a downgoing wave, whereas the A term is 
upgoing. The coefficient B thus determines an incident wave. This incident wave, together 
with continuity of E and its normal derivative at the interface x3 '= 0 and a radiation 
condition in the lower half-space, uniquely defines the scattered wave, which determines 
A. (See appendix 1 for details.) Consequently, we can define s as the map from B to A.  
Thus .? maps incident fields to scattered fields; knowledge of $ is equivalent to knowledge 
of the scattered fields corresponding to all incident fields in some class. In particular, can 
be considered as a m 2  on the space L2(Rz)  of squareintegrable functions. The operator 
S is then defined by Sf = jf. 

> k ,  then the second term on the right-hand side of (2.1) grows exponentially 
as x3 becomes large. Because it is not physically reasonable for the incident wave in a 
scattering experiment to be exponentially large at infinity, in the scattering case we take B 
to be zero for [e1 k .  For these values of e ,  the scattered wave also decays exponentially as 
x3 goes to infinity; thus for a scattering experiment in which measurements are made in the 
far field, the relevant scattering operator is PsP, where P denotes the projection operator 
of multiplication by the function that is one for > k.  Appendix 3 
contains a proof that Pip, as a map on a certain L2 space, has norm less than one. 

If 

< k and zero for 
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In the case when the incident wave is a plane wave independent of x2, making an angle 
0 with the vertical, B is a delta function supported at c = (ksin0,O). If the lower half- 
space varies only in the depth coordinate x3, then .? = P.?P is simply multiplication by the 
usual reflection coefficient (Towne 1967, Tsang etal 1985). Thus data from a single angle 
of incidence 0 defines the action of .? on a({ -k(sin0,0)). As 6 varies and the incident 
beam rotates around the vertical axis, the set []cl < k }  is swept out. Thus knowledge of .? 
incorporates knowledge of scattering for all angles of incidence. 

This definition of scattering data differs from that in Tsang et al (1985), Xu (1992) and 
Weder (1991) in that no far-field asymptotic expansion is needed. The present definition 
may thus be useful in cases when measurements are made close to the surface. The 
present definition can handle any antenna beam pattern. However, this definition has 
the disadvantage that measurements are needed everywhere on a horizontal surface to 
completely determine .?. This makes it unsuitable for use with satellite-borne radar. If 
n2 and m are assumed to depend only on x3, then .? can be determined for all < with 
magnitude less than k by measuring the reflection coefficient for all angles of incidence. 

The inverse scattering problem is to determine nz and m in the lower half-space from 
knowledge of .?. In the threedimensional case, if .? is thought of as an integral operator 
mapping functions of two variables to functions of two variables, it is clear that .? depends 
on four variables. The unknowns n2 and m depend on only three variables, so this inverse 
problem is overdetermined in the three-dimensional case. In the two-dimensional case, .?, 
n2, and m are all functions of two variables. 

2.2. The point source inverse problem 

Another way to define scattering data is to assume that the incident field is due to a point 
source located either on the surface x3 = 0 or in the upper half-space. In this case, (1.4) 
becomes 

(V2 + k2n2 + ikm)G(x, y )  = -S(x - y )  (2.3) 

where y is the location of the source. To define G uniquely, one needs an outgoing radiation 
condition at infinity. (See appendix 1 for details.) Scattering data in this case can be taken 
to be knowledge of G(x, y )  for all x with xg = constant and all y with y3 = constant. 

The point source inverse problem is to determine n2 and m in the lower half-space 
from the scattering data. In the three-dimensional case, the scattering data depend on four 
variables; in the two-dimensional case, on two. 

2.3. The inverse boundary value problem 

A boundary value problem can be defined by 

(0' + k2n2 + ikm)u = 0 for x3 < 0 (2.4) 

together with an outgoing radiation condition in the lower half-space. I f f  is in the Sobolev 
space H'12 and m is positive and bounded away from zero, the Lax-Milgram theorem can 
be used (Treves 1975) to show that the boundary value problem (2.4), (2.5) has a unique H' 
solution in the lower half-space. (A more explicit construction, involving Green's functions, 
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is given in appendix 2.) Thus the normal derivative a u l a v  on the surface x3 = 0 is uniquely 
determined. The mapping from HI/' to H-'/' 

is called the Dirichlet-to-Neumann map. Such maps have been used a great deal recently 
in the study of inverse problems (Sylvester and Uhlmann 1986, 1987, 1988. Somersalo et 
a[ 1991, 1992, Somersalo 1994, Sylvester 1992). 

The inverse boundary value problem is to determine n' and m in the lower half-space 
from knowledge of A. In the three-dimensional case, A depends on four variables; in the 
two-dimensional case, it depends on two. 

For some purposes, it is more convenient to work with the inverse of A; this inverse 
can be defined directly in a similar way. 

3. Connections between the scattering problems and the boundary value problem 

In this section, we discuss the sense in which the above inverse problems are equivalent. 

3.1. The scattering pmblem and the boundary value problem 

To see how the scattering problem is related to the boundary value problem, we recall that 
E and its normal derivative are continuous at the interface x3 = 0. In the upper half-space, 
however, E is given by (2.1). If E = f on x3 = 0, then we have 

(3.1) r̂  = ( 3  + I ) B  

where Z denotes the identity operator, and, differentiating (2.1) with respect to x3: 

;\3 = ih+(3 - I )B .  (3.2) 
~* - A  

Eliminating E from (3.1) and (3.2) and defining Af = Af, we have 

A(.?+ I )  = ih+(3 - I ) .  (3.3) 

This is an operator equation that holds on a certain function space that is discussed in 
appendix 3. 

To recover A from 3, it appears that we need only invert the operator 3 + I appearing 
on the left-hand side of (3.3). To find the inverse, we solve the system (3.1), (3.2) of linear 
equations for B ,  obtaining B = $ ( I  - (iA+)-'A)f. This shows that 

( 3  + z)-' = $ ( I  - (ih+)-'A). (3.4) 

This expression itself can be used to recover A from 3. 
A similar argument shows that 

( I  - (iA+)-'A)-' = $(S + I )  

this expression can be used to obtain 3 from A. Note that this formula and (3.4) each 
contain terms with a singularity at A+ = 0. This is to be expected because 3 is not defined 
at A, = 0. 
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3.2. The point source problem and the boundary value problem 

To see how the point source problem is connected to the boundary value problem, we follow 
Nachman (1988), where this connection was worked out for the case of a bounded body. 
We write q = k2n2 + ikm and qo = k2 so that the perturbed and unperturbed point source 
problems can be written 
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(0’ + q)G -6 (3 .54 

and 

(V2 + qo)Go = -6 (3.5b) 

respectively. The scattering solutions G and Go satisfy radiation conditions at infinity. 

v2 + 40, respectively. 
We write A, and A0 for the Dirichlet-to-Neumann maps for the operators V2 + q and 

We next use the scattering solutions G and Go to define two integral operators, 

r f ( x ’ )  = lim / G((x’, O), (Y’. ~ 3 ) ) f ( ~ ’ )  dy’ (3.6a) 
n-0-  

and 

rof(x’) = lim GoKx‘, 01, (Y‘, y3))f(y’)  dy’. (3.6b) 
B+O- s 

Theorem. G is related to A, by the ‘boundary resolvent equation’ 

ro - r = ro(A, - Ao)r. (3.7) 

For the proof of this theorem, we need the following notation and lemma. 
Given any f defined on the surface x3 = 0, we use rf to define the solutions U and U 

(VZ+ q)u = 0 (3.8) 

uiri=o = rf (3.9) 

of the following boundary value problems: 

and 

( 0 2  + q0)u = 0 

UL+, = rf. 
Both U and U are outgoing at infinity in the lower half-space. 

Lemma. The solution U to (3.8), (3.9) is actually given by 

(3.10) 

(3.11) 

(3.12) 

ProoJ The function defined by equation (3.12) is an outgoing solution to (3.8), which on 
U the boundary x3 = 0 is equal to rf. 
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Proofoftheorem. Here we carry out Nachman’s (1988) argument for the half-space case. 

I ( x )  = 1 (Go(x - y)V2(u - v)(Y) - (U ,- U)(Y)V~GO(X - Y))dy. (3.13) 

This integral is the limit as h goes to infinity of the integral I,, in which the integrand is 
the same but the region of integration is C,*, a large cylindrical region with radius h2 whose 
top is a disk in the plane y3 = 0 and whose bottom is a disk in the plane y3 = -h. 

Relation (3.7) is obtained by using two different methods to compute the integral 

n CO 

First, by Green’s theorem. 

where a, denotes differentiation with respect to the outward unit normal and 8Ch denotes 
the boundary of Ck. The boundary of Ch has three parts: the disk of radius h2 on the 
surface y3 = 0, the disk of radius hZ on the surface y3 = -h, and the side of the cylinder. 
We denote the corresponding integrals by I;, I;, and I;, respectively. 

First we consider 1;. Because U = U on y3 = 0, the second term of 1; vanishes. Taking 
into account definitions of ro and the Dirichlet-to-Neumann maps, we find that for x with 
x3 = 0, the first term is equal to ro(A,u -&U) = ro(A, - Ao)rf. 

The integrals 12 and 1; vanish as h goes to infinity because of the asymptotics of Go. 
(See lemma A 1 2  in appendix 1.) 

Thus we have shown that 

I I x3=o  = r o w 4  - A o P f .  (3.15) 

On the other hand, we can compute I without using Green’s theorem. We see from 
(3.5), (3.8). and (3.10) that 

r 

The terms in (3.16) involving qo&v cancel. Moreover, as x approaches the surface x3 = 0, 
the term (U - u)(x) vanishes. Thus (3.16) becomes 

I=-13<oGo(q  -qo)udy. (3.17) 

The solution U of the boundary value problem, however, is given by U = S Gf. Using this 
in (3.17), interchanging integrals, and using theresolvent equation G-Go = S Go(q-qo)G. 
we obtain 

0 

In order to use (3.7) to obtain the Dirichlet-to-Neumann map from knowledge of the 
point source data, we need to be able to invert the integral operators r and ro. This is 
discussed in appendix 1. 

Similarly, to obtain the point source data from the Dirichlet-to-Neumann map, one needs 
invertibility of the map I + rO(A, - Ao) = r0T-I. which follows from invertibility of r 
and ro. 
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4. The inverse boundary value problem 

Because the inverse scattering and inverse point source problems can be converted into 
the inverse boundary value problem, it is this problem we address here. We outline a 
possible approach, one based on the idea of layer-stripping. Roughly, the idea is first to 
use the measured data to find the medium parameters on the boundary, then to use that 
information to synthesize data on a nearby inner subsurface. The process is then repeated. 
In this manner, the medium is mathematically stripped away, layer by layer, and the medium 
parameters are found in the process. 

For one-dimensional problems, this is an old idea; we make no attempt to trace its history 
here. A few references are Bruckstein (1985). Chen (1992) and Corones et nl (1983). 
For multi-dimensional problems it has not been so clear how to proceed; various multi- 
dimensional layer-stripping algorithms have been suggested in Cheney and Kristensson 
(1988), Somersalo et al (1991, 1992), Weston (1989, 1990), Somersalo (1994), DeHoop 
(1995) and Yagle and Levy (1986). We outline here a simple way to formulate a multi- 
dimensional layer-stripping procedure. 

Most of the layer-stripping schemes involve some sort of Riccati equation to remove a 
known layer of the medium. A Riccati equation, moreover, can be useful as a theoretical 
tool in working with inverse problems (Lee and Uhlmann 1989). As we see below, using 
the Dirichlet-to-Neumann map makes the appearance of a Riccati equation especially easy 
to understand. 
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4.1. Synthesizing the subsurface data 

TO synthesize the subsurface data, we obtain a differential equation for the boundary data in 
the depth variable. This requires that we extend the definition of the Dirichlet-to-Neumann 
map to any z c 0: 

This map satisfies the following Riccati equation: 

This equation is obtained by differentiating (4.1) with respect to z, using (2.4) to eliminate 
a2u/az2, and using (4.1) to eliminate au/az. 

We note that equation (4.2) wgether with (3.3) or (3.4) can also be used to obtain a 
differential equation for the scattering operator 2. In the case when dS/dz commutes with 
i (such as in the layered case when .? is a multiplication operator), this differential equation 
has the form 

d i  
dz 

2ii+- = A:(S - 112 + (i + r)*i.q2 - (i + I ) ~ Q  (4.3) 

where Q f  = ;i?. 
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4.2. Finding the medium parameters on the boundary 

To solve the inverse problem, we also need to use the boundary data to find the medium 
parameters on that same boundary. One approach to doing this is to use the idea from Kohn 
and Vogelius (1984) aid Somersalo et a1 (1991, 1992) that is based on the principle that 
highly oscillatoly boundary data corresponds'to waves that penetrate only a short distance 
into the body. The difficulty with this approach, however, lies in the practical problem of 
creating such a field on the boundary: even in a non-dissipative homogeneous medium such 
as air, fields with rapid spatial oscillations decay exponentially. This can be seen by writing 
a solution of 

( 0 2  + q0)u = 0 (4.4) 

as u ( x )  = u(c ,x3 )  exp(it . x ' ) ,  so that U satisfies the ordinary differential equation 

Even when 40 is real, for large c the solution v decays exponentially. This suggests that 
conventional radar experiments, in which the antenna is far from the sample, could not 
supply highly oscillatory boundary data. 

Accordingly, we consider an alternative method for obtaining the medium parameters 
on the boundaq, namely geomeuical optics (Sylvester and Uhlmann 1991). This requires 
that we use either a range of temporal frequencies w or that we do the experiments directly 
in the time domain. 

The time-domain version of (1.3) is 

The plan is to obtain a progressing wave expansion (Courant and Hilbert 1962) for (4.6); 
an expansion in functions of @ ( x )  - t ,  however, results in successive coefficients differing 
in magnitude by the speed of light CO.  We therefore make the change of variables t = cob, 
which converts (4.6) into 

(v* - nza: -ma& = 0. (4.7) 

We are interested in the small-time behaviour of U in the neighbourhood of an interface at 
x3 = 0. For x3 =- 0, where n = 1, we expect that U is composed of an incident plane wave 
U' = S(s' (x)  - t) plus a reflected wave, which we expand in the form 

Ur(Sr(X) - t) AL(X)S(S'(x) - Z) + A; (x)H(s'(x) - t) + . . . . (4.8) 

Here si and s' are the incident and reflected phases.6 denotes the Dirac delta function, and 
H denotes the Heaviside function that is one for positive arguments and zero for negative 
arguments. We take U' to be a plane wave propagating in direction t? = (e , ,  e2, e3), which 
implies that si = e ^ .  x .  Because we take this wave to be propagating in the downward 
direction, e3 is negative. Just below the interface, for a short time we expect U to take the 
form of a transmitted wave, which we also expand as 

Ut(st(x) -7) =Ak(x)S(~'(x) - Z ) + A ; ( X ) H ( S ' ( X )  -z)+.... (4.9) 
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Here again st denotes the phase of the transmitted wave. On the interface x3 = 0, U and 
its first x3 derivative are continuous. Using these conditions at the interface and forcing U 
to satisfy (4.7) results in the eikonal equation 
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(vs)' = n2 (4.10) 

the interface conditions 

(4.11) i t s Ix,=o = sr14=o = s Ix,=o 

and the transport equations 

2Vs . VAo + AoV2s + mAo = 0 

2 V s . V A i + A l V Z s + m A ~ + V 2 A o = 0 .  

(4.12) 

(4.13) 

Here the absence of superscripts 'r' or 't' indicates that the equation in question holds for 
both the reflected wave and transmitted wave. Solving these equations gives us 

n 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

a,,A; - a,A; 

4 -  Jm' A; I ~ = o  (4.18) 

-The quantities &,Ah and &,Ab appearing in (4.18) can be computed, with the help of the 
transport equation (4.12), to be 

ax& = (el&, +e2aX,)A;le3 (4.19) 

and 

To obtain the medium parameters n2 and m at a point x' on the surface from scattering 
data, we send in an incident wave that is planar in a neighbourhood of x'. We then measure 
the scattered field at all points on a plane x3 = constant. From this information, the short- 
time scattered field can be inferred in a neighbourhood of x'. The value of A; at x' tells 
us, via (4.16), what the value of n2 is at xo. In this manner, we obtain nz for every point on 
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the surface: this allows us to compute, at every point, not only Ab from (4.17) but also the 
X I -  and xz-derivatives appearing on the right-hand side of (4.19) and (4.20). Once these are 
known, &,A:, can be computed and used in the right-hand side of (4.18); since A; is also 
known, from (4.18) we can obtain &,Ah. AI1 quantities in (4.20) are thus known except for 
m and a&; evidently both quantities cannot be found from a single angle of incidence. 
Use of the scattered field from two angles of incidence allows us to find both m and a.&. 

Let us consider the layer-stripping algorithm in the case when a complete set of incident 
fields are used and measurements of the corresponding scattered fields are made on a 
plane. We assume measurements are made at N frequencies. For experiments with stepped- 
frequency radar, for example, N can range from 51 to 801 (Jezek 1994). The algorithm 
proceeds as follows. 

Step I .  From the measurements at frequencies k o , k l ,  .... k ~ ,  construct an 
approximation to each scattering operator S(k,), n = 0, 1, . . . , N .  In practice, one would 
represent S(k,) by its matrix with respect to some basis. Such a basis could perhaps be 
constructed from antenna beam patterns for a large number of incident angles. The operator 
3, for example, is the representation of S in a Fourier basis. 

Step 2. For each of at least two incident directions Zj, j = 1,2, . . . , J ,  choose an 
incident field that looks like exp(iknZj . x )  in the neighbourhood of some point xo on the 
surface. Apply S(k.) to these incident fields to obtain the scattered field E,,(k, ,x).  

Step 3.  Fourier transform into the time domain to obtain U r ( r , x ) .  In practice, one can 
do this by first synthesizing an approximate delta function in the form 

N 
6(r)  wneiCr (4.21) 

"=I 

where the w, are, for example, Hamming weights (Oppenheim and Schafer 1975). Then 
the field 

N 

e ( r ,  x )  % E,(k,,x)w.e'"' (4.22) 
"=l 

is locally the response to the incident approximate delta function (4.21). 

by the least-squares minimization 
Step 4.  Extract the coefficients Ai(xo,2j) and A; (no, 2j). This can be done, for example, 

mi: Sr lUr(r, X O )  - A & I ,  2j)6(sr(xo) - r )  - A;(xo, 2j)H(sr(xo)  - r ) lZdr  (4.23) 

where for U' one uses (4.22), for s' one uses (4.14), for 6 one uses (4.21), and for the 
Heaviside function H one uses 

A&A: 0 

(4.24) 

Step 5. From Ab(xo, 2j) and A;(%, 21) for j = 1.2, . . . , J ,  determine n2(q), m(xo), 
and a,,n2(xo). If J > 2 so that the system is overdetermined, one can use least squares to 
find the best fit (Chaderjian and Bube 1993). 

Step 6. Repeat steps 2-5 for a large number of points xo on the surface. 
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Srep 7. For each k,, synthesize the subsurface data either from a Riccati equation for 
S(k.) such as (4.3), or use (3.3) or (3.4) to convert S(k,) to A@"), use (4.2), and convert 
back to S(k,J with (3.3) or (3.4). Again, in practice, the operators S(k,)  and A@,) would 
be represented as matrices with respect to some basis, and equations (3.3), (3.4). and (4.2) 
would be approximated as matrix equations. 

Step 8. Repeat, starting with step 2. 
Although the above algorithm may seem ready to implement, it cannot be used in its 

present form because it is unstable. This is partly because of the multiplication by on 
the right-hand side of (4.3) or, equivalently, because of the X I  and x2 derivatives appearing 
on the right-hand side of (4.2). This is similar to the situation in Yagle and Levy (1986); 
this type of instability can be overcome to some extent by smoothing in the X I  and x2 

directions, as discussed in Cheney (1990). Even when the problem is independent of X I  

and x2, however, one expects the methods to be unstable, due to the fact that only a little of 
the energy put into the system on the top can propagate to great depths. Thus one expects 
the boundary data and scattering data to contain little information about the deeper regions. 
There may be methods, such as those of Somersalo et a1 (1991, 1992) and Sylvester etal 
(1995), for overcoming this instability to some extent. Finally, there may be difficulties 
connected with using bandliiiting data as described in Pao et a1 (1984). Investigation of 
methods for overcoming the instability is left for the future. 
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Appendix 1. Construction of scattering solutions 

In this appendix, we will construct outgoing solutions of (1.4) and (2.3). We do this with 
the help of the unperturbed Green's function. 

AI.1. Construction of the scattering Green's funcrion 

The unperturbed scattering Green's function Go(x, y )  = Go(x1 - y ~ ,  xz-yz, x3, y3) satisfies 

(AM) 

and is outgoing at infinity. Here ni = 1 and mo = 0 for x3 > 0, and = n? and mo = m- 
for x3 c 0. Equation (Al.1) can be Fourier transformed in the X I  and xz variables, which 
yields 

(Vz + k2ni(x3) + ikmo(x3))Go(x, y )  = -S(x - y )  
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where we have written A i  = -I(]' + k2ng + ikmo. The general solution of (A1.2) is 

&$(c, x3. y3) = A'(c)eiAiXA + B+(()e-'"IX3 (Al.3) 

for x3 > 0 and 

e;(( ,x3.  y3) = + B-(()e-"-" (A1.4) 

for x~ < 0, where A! = - 1 $ 1 2  + k2n! + ikm-. The coefficients A* and B', however, 
depend on whether y3 is positive or negative and are different in the regions separated by 
the origin and the point x3 = y3. When x3 is bigger than both 0 and y3, the condition that 
60 be upgoing implies that B+ is zero; when x3 is less than both 0 and y3, the condition 
that 60 be downgoing implies that A- is zero. 60 and its x3 derivative are continuous 
except at x3 = y3, where &o is continuous but its x3 derivative jumps by one. Solving for 
the As and B s  in both cases results in 

for x3 z 0 
for x3 i 0 

(A1.5) 

for x3 > 0 
for x3 < 0 

(A 1.6) 

(AI .7) 

(A1.8) 

Note that since the imaginary parts of A+ and A- are non-negative, the exponents in (AI .5) 
and (A1.6) are decaying. Green's function itself is obtained from its Fourier transform by 

A1.2. Construction of scattering solutions 

Ear an incident wave Eo, a scattering solution E of (1.4) can be defined as the solution to 
the integral equation 

E(x) = Eo(x)  + /"Go@, y)V(y)E(y)dy (A1.9) 

where we have written V ( y )  = k 2 ( n z ( y )  - 2) + ik(m(y) - m-). 
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Similarly, for (2.3). the scattering solution G(x, y )  at x due to a point source at y should 
satisfy the resolvent equation 

~ ( x ,  Y )  = ~ ~ ( x ,  Y )  + 1 G ~ ( X ,  Z ) W G ( ~ ,  Y)dz. (Al.lOa) 

The Green's function G, however, has ,a singularity at x = y, which causes some technical 
problems. We therefore write the resolvent equation in terms of the scattered wave G,, 
which is defined by G = Go + Gsc: 

G,,= 1 GoVGof 1GoVG..  (Al.lOb) 

In order to use (A1.9) to define E ~ a n d  (Al.lOb) to define G, we must show that both 
equations have unique solutions. 

In order to do this, we will need the following spaces that are weighted in the x3 
variable: 

L2."@3) = { U  : (1 + lx312)% E L 2 3  @ )} 

H'.' = {U : Dau E LAX, la[ 6 1) 

where we use the multi-index notation 01 = (011 ,0r~ ,q) ,  ]cl[ = loll] + lo121 + 11y31, and 
D' = (a/axl)"'(a/axz)"l(a/ax3)=3. Here L2 denotes the space of squareintegrable 
functions. 

Proposition Al.1.  
compact in H'.-'(R3) for any s z l/2. 

Proof. Because we are making the (unnecessary but simplifying) assumption that V has 
compact support in the lower half-space, we write GoV as GOX V ,  where x is the function 
that is one on the support of V and zero everywhere else. We then follow the ideas of 
Agmon (1975): first we show that multiplication by V is a compact operator mapping H ' I - ~  
into LZJ;  then we show that the operator Gox is a bounded operator mapping L2J into 
H'.-'. Hence the product operator GoxV = GoV is a compact operator on 

Multiplication by V is a compact operator from H's-' to L2J under much more 
general conditions (see Schecter 1986). Here, however, we can simply rely on the Sobolev 
imbedding theorem (Adams 1975, p 144). 

To show that Gox is a bounded mapping from L2,* into H'.-", we follow the outline 
of the argument in Reed and Simon (1978). We write @ = Gox$, which, when Fourier 
transformed, reads 

If V is a bounded function of compact support, the operator GoV is 

@(A-, h+)e-i"-"3+n) +e'h-'R-y3')7&', B)dy3 

T ( L ,  A+)e-'*--neiA+'"3$(c, y3) dy3 

for x3 < 0 

for x3 > 0 
&,x3) = 0 :I1 (Al.ll) 

where h is chosen so that the support of V is in the region y3 > -h. 
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Because the exponentials on the right side are decaying, from (Al.11) we can draw the 
conclusion 

(A1.12) 

where L' refers to L'(-h. 0). Similarly, if we differentiate 6 ,  we obtain 

I&ixt, x3)I < c l l k  .)llLl (A1.13) 

for any ]a[ 6 1. 

L' norm on the right-hand side can be bounded above by 
Next we relate each side of (A1.13) to a weighted norm in the x3 variable. First, the 

(A1.14) 

The left-hand side of (A1.13). on the other hand, can be related to a weighted norm by 

Ilfi(t, 911;2.., = / ( l  + 1x31 2 ) --s ID"6(t,X3)lZdX3 - < Ilmct, .Ill;- / ( I  + Ix312)-sdx3. 

(A1.15) 

Fors  z 112, the rightmost integral of (Al.15) converges to a positive real number; thus we 
can rewrite (A1.15) as 

A 

IlD%3(S7 .)I&" < CIlD"6(t, .,st-. (A1.16) 

Using (A1.14) and (A1.16) in (Al.l3), we obtain 

IlD(t, .)ll;%.-s < cll$(t, .,II;*..c. (A1.17) 

Next we convert (A1.17), which involves only one-dimensional weighted norms, to a 
similar statement about three-dimensional weighted norms. We do this by integrating both 
sides with respect to XI and xz, and using the Plancherel theorem to obtain 

U 

Because the medium in the lower half-space is dissipative, waves there must decay 
exponentially as they eavel in the medium. We can see this as follows. 

Le"nA1.2. If V has compact support, then in any finite-thickness slice of the lower half- 
plane (x : x; < x3 < x: < 01, any solution U of (1.4) that is in If's-' decays exponentially 
at infinity. 
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Proof. We consider a rectangular region along the XI axis outside the support of  V ?  namely 
( x  : x; i xl. 0 e x2 e x:, x; e x3 e x: e O}. In this region, we write U in a Fourier 
series 
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(A1.19) 

where we have written Ax2 = x z  - x; and Ax3 = x: - x;. Since U is not periodic in the 
x2 or x3 variables, this expression will not coincide with U outside the box, but this does 
not matter for the present purpose. 

Because U satisfies the unperturbed wave equation (1.4) in the box, the Fourier 
coefficient i f . ,  satisfies the ordinary differential equation 

(A1.20) 

with solutions that are linear combinations of exponentials that either grow or decay for 
large xl. Because U is in HI.", the coefficients of  the growing exponentials must be zero. 
The solution U can therefore be written 

(A1.21) 

To show that the right-hand side decays exponentially in the x1 variable, we note that the 
imaginary part of the square root is bounded below by m 4 2 .  A factor of e-m-r1/4 can thus 
be pulled out of each term, and the remaining series converges. 

Because (1.4) is isotropic outside the support of V ,  any direction can be chosen as the 
X I  duection. 0 

Proposition A1.3. Suppose V is a bounded function of compact suppoa, and assume m 
is strictly positive in the lower half-space. Then if Eo is in (A1.9) has a unique 
solution in HI.-' fors  1/2. Similarly, (Al.lOb) has a unique solution in the same space. 

Proof. For (Al.lOb), we check that the inhomogeneous term GoVG0 is in HI." for 
s > 1/2. The Green's function Go, being a fundamental solution of the Helmholtz equation, 
has no singularities worse than the l/lx - yI singularity for x near y. This singularity, 
however, is square-integrable in three dimensions. The product VGo is therefore in L2.*, 
so by proposition A1.1, GoVG0 is in 

By the Fredholm theorem, to show that each of (A1.9) and (Al.lOb) has a unique 
solution, we need to show that the homogeneous equation 

@ ( x )  = J Go(x. y)V(y)@(y)dy (Al.22) 

has only the trivial solution. A solution to (A1.22), however, corresponds to a solution 
of (1.4) with no sources and no incoming wave. To show that such a solution must be 
identically zero, we use an energy identity, which we obtain by multiplying (1.4) by the 
complex conjugate E 'and integrating over a cylindrical region 52, of radius p ,  whose top 
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is a disk in the x3 = x: plane and whose bottom is a disk in the plane x3 = -k. Here h is 
chosen so that the support of the perturbation V is contained between the planes x3 = -k 
and x3 = 0. After an application of the divergence theorem, we have 

For E in (A1.24) we substitute a solution $r of (A1.22), written in the form 

(A1.23) 

(A 1.24) 

From (A1.6) we see that for x3 > 0, 

$ ( E ,  x3) = A(5)e’““”’ 

and for X.J < -h, 

$(e, x3)  = ~(f)e-”-’3 

for some coeffiiients A and B.  We use these expansions in (Al.%$), which is then substituted 
into the integrals over the top and bottom of the cylinder on the right-hand side of (A1.23). 
We then let p go to infinity; the integrals over the vertical sides of the cylinder go to zero 
as p goes to infinity by lemma A1.2. Finally, in the integrals over the top and bottom, we 
perform the x’ integration. The result is 

.- 
(A1.25) 

If @ is non-zero  and^ k is positive, the left-hand side of (A1.25) has a negative imaginary 
part, whereas the imaginary part of the right-hand side is non-negative.’This shows that @ 

0 

If m were identically zero in some region in the lower half-space, the above argument 
does not rule out the possibility that $r might be non-zero there. This could happen, for 
example, if kZnZ were equal to a constant that happened to be a Dirichlet eigenvalue for 
the region in which m is identically zero. In this case, there could exist a non-zero solution 
in that region with zero boundary values. This possibility can be ruled out by assuming 
smoothness of nz and m, so that the unique continuation principle of Reed and Simon (1978) 
holds. 

Next we investigate the invertibility of the integral operators defined in (3.6). For this, 
we need to define the following subspaces of L2J and Hs:  

is identically zero for k positive. 

and 

$-  k - { f : f € , i y l .  

PropositionAl.4. If m is strictly positive in the lower half-space, then the integral operators 
r and ro are both invertible operators from H-l/z(JRz) to F?:/’(JRz). 
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Proof. The result for To is clear from expression (A1.6) with x3 = y3 = 0. 
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To show that r is invertible, we write (following Nachman 1988) 

r = ro ( I  + r;'(r - ro)) 

so that invertibility of r follows from invertibility of I + r;'(I' - ro). The difference 
r - ro is a compact operator on HI'' because it can be written in terms of the composition 
ofthe compact operator G ~ V  with G (see proposition AM). Since r;l(r-ro) is compact, 
invertibility of I + r;'(r - ro) follows from its injectivity, which in turn follows from the 
injectivity of r. 

To see that r is injective, we write u(x)  = &=, G(x, y ' ) f ( y ' )  dy', where we assume 
u ( x )  = 0 for x3 = 0. The lemma in section 3 shows that U satisfies (3.8) with zero boundary 
values; the argument of proposition A2.2 shows that U must be identically zero in the lower 
half-space. We next multiply (Al .10~)  by f ,  integrate with respect to y', and let y3 and x3 
approach zero through negative values. We obtain 

u(x') - ro f (x ' )  = / Go((x', O ) ,  z)V(z)u(z)dz 

which, since U is identically zero, reduces to r,f = 0. The injectivity of ro, however, is 
clear from (A1.6). 0 

Appendix 2. Construction of the outgoing solution to the boundary value problem 

In this appendix, we will consmct an outgoing solution to the boundary value problem with 
the help of the outgoing Green's function that is zero on the boundary x3 = 0. This Green's 
function is then used to convert the boundary value problem to an integral equation, which 
will be shown to have a unique solution. 

A2.1. The outgoing Dirichlet Green'sfunction 

In the lower half-space I@, the Green's function g(x ,  y )  = g(xl - y l , x z  - y2 ,x3 ,y3 )  
satisfies an outgoing radiation condition and the boundary value problem 

(A2.1) 2 2  (0' + k n- + ikm-)g(x, y )  = -S(x - y )  

g ( x ,  Y ) L F O  = 0. W.2) 

ThisGreen's function can be constructed by two methods. The first method is that used 
in appendix 1; in particular, equation (A2.1) can be Fourier transformed in the X I  and xz 
variables, which yields 

(A2.3) 

where we have written A? = -].$I2 + k'n! + ikm-. For y3 < x3 -= 0, the general solution 
of (A2.3) is 

2 2  (8, + L)i?G. x3, ~ 3 )  = -S(x3 - E.) 

g+(.$, x3, y3) = A+(.$)e3-'3 + B+(.$)eWih-"3 (A2.4) 
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for x3 < y3 c 0, it is 

j-(c, x3, y3) = A-(.5)eiA-’3 + B-(c)e-’”-”. (A2.5) 

The condition that H be downgoing as x3 + -CO implies that A- = 0: the boundary 
condition (A2.2) implies that A+ + E+ = 0; &? is continuous at x3 = y3 but the derivative 
aj/ax, jumps by 1. Solving for the As and Bs, we obtain 

Written in this form, it is clear that when A- has positive imaginary part, g((, x3, y3) 
decays exponentially as x3 + --CO. Moreover. for fixed x3 # y3, decays exponentially 
as I< I + CO. This Fourier transformed Green‘s function can also be written as 

e-’*-fi sinh-xj for y3 < x3 < o 
for x3 < y3 6 0. 

(A2.7) 
sinLy3 

The Green’s function itself is then 

. (A2.8) 

This same Green’s function can also be constructed by the method of images. For a point 
= (y,, y2. -y3). y = ( y ~ ,  y2. y3) in the lower half-space, the corresponding image point is 

Then we can write the Green’s function as 

It is clear from this expression that g decays exponentially at infinity. 

function can be Fourier transformed as 
To see that these two representations are the same, we recall that the free space Green’s 

In this Fourier transform integral, we can do the 53 integral first; it is 

(A2.10) 

(A2.11) 

where we have written 
integration; it is equal to 

= (51, 52) .  This one-dimensional integral can be done by contour 

(A2.12) 

To relate (A2.12) to (A2.6), we let y = (kzn? + ikm-)l/z; we then substitute x3 - j3 for 
x3 in (A2.12) and subtract the resulting expression from the one obtained by substituting 
x3 - y3 for x3. = 
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A2.2. Construction of the outgoing solution to the boundary value problem 

We construct the outgoing solution to the boundary value problem as the solution to an 
integral equation. This integral equation is obtained by multiplying (2.4) by g and (A2.1) 
by U, subtracting the resulting equations, and applying Green’s theorem. After using the 
boundary conditions at infinity and (2.5), we obtain 
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where we have written V ( y )  = k 2 ( n Z ( y ) - n ~ ) + i k ( m ( y ) - m - ) .  We can write this equation 
in more compact notation by writing the first term on the right-hand side in operator notation 
as gVu. This equation can be used to define U. 

First, we show that a solution U of (A2.13) has the desired properties. It is clearly 
outgoing. To see that U satisfies the correct boundary condition, we evaluate (A2.13) at 
x3 = 0. From (A2.2) or (A2.7) we see that the Green’s function is zero when x3 = 0. Thus 
the entire contribution to U comes from the second term on the right-hand side of (A2.13). 
Again from (A2.7) and (A2.8) we see that the normal derivative of g on the surface y3 =.O 
is 

(A2.14) 

which, as x3 + 0, becomes a negative delta function supported at x‘ = y’.  0 

Next we show that equation (A2.13) has a unique solution in HI. 

Proposition A2.1. 
compact in HI(@). 

Prooj We follow the ideas of Agmon (1975): first we show that multiplication by V is 
a compact operator mapping HI into Lz; then we show that the operator g is a bounded 
operator mapping L2 into HI. Hence the product operator gV is a compact operator on 
HI. 

To see that multiplication by V is a compact mapping from H’ into L2, we simply 
invoke the Sobolev imbedding theorem Adams (1975). 

To show that the operator g maps L2 into H’, we begin by writing 4 = gq .  The two- 
dimensional Fourier transform of this is 4 = i$. From (A2.6) we see that j is bounded 
and decays for large [(I like l/[(l; this shows immediately (with the help of the Plancherel 

To show the same thing for the x3 derivative, we write g = i(2h)-’(hl - hz), where 
hl (e ,  x3, y3) = exp(ih-[x3-y3[) and hz(<, x3. y3) = exp(-ih-(x3+y3)). With this notation, 
we have 4 = 41 + &, where 

If V is a bounded function of compact support, the operator gV is 

theorem) that 11@1[LZ(R:) < Cllq’llLZ(R?) and Il~@/axiIlLz(~?) <;ll$llp(~~) for f = 1,2. 

(A2.15) 

and 
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Differentiation of 42 with respect to x3 gives 

since both exponentials in this expression are decaying, we have 

Using the Plancherel theorem and integrating over XI and xz then shows that 

Ilah/ax3IIL2(n~) < cll@llL2(mi). 

Differentiation of 41 with respect to x3 gives 

(A2.17) 

We extend 4 to the whole real line by defining it to be zero for y3 > 0. This allows us 
to extend the region of integration on the right-hand side of (A2.18) to the whole real line, 
so that the right-hand side becomes a convolution. We then Fourier transform in the x3 

variable, obtaining 

(A2.19) 

where 4 and \i, are the one-dimensional Fourier transforms of a&/ax3 and $,~respectiveIy, 
and where.we have have used 01 = ~ ( 6 )  and ,6 = B ( C )  for the respective real and imaginary 
parts of A-. Taking Lz norms of both sides of (A2.19), in the 7 variable, we see that 
lI6(<, . ) I ILZ(R-)  < cl]$([, . ) l l~y~- ) .  Using the Plancherel theorem and integating over XI  
and xz then shows that 

(A2.20) 

0 

Proposition A2.2. If m is strictly positive, equation (A2.13) has a unique solution in 
H'PS3). 

Proof. The Fredholm alternative guarantees that (A2.13) has a unique solution provided 
that the corresponding homogeneous equation has only the zero solution. A solution of the 
homogeneous equation is also a solution U of (2.4) and (2.5) with f = 0. To show that 
such a U must be identically zero, we use an energy argument. The procedure for obtaining 
this energy identity is to multiply (2.4) by the complex conjugate ii and integrate over Ch, 
a cylindrical region with radius lx'l = h' and extending from x3 = 0 to x3 = -h. After 
using Green's theorem, we obtain 

(A2.21) 
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where v is the outward unit normal to Ch. 
The right-hand side of (A2.21) has three parts, corresponding to the parts of the boundary 

of C,. The integral over the disc on the plane x3 = 0 contributes nothing because U is 
zero there. Similarly, the integral over the disc on the plane x3 = -h goes to zero in the 
limit h + 00 because of the radiation condition in the lower half-plane. The integral over 
the side of the cylinder also vanishes because of the large-p asymptotics of U. Thus the 
right-hand side of (A2.21) vanishes as h + W. Thus, in the limit, we have 

(A2.22) 

Both the real and imaginary parts of the left side of (A2.22) must be zero; since for k 
0 

As discussed in appendix 1, the hypothesis that m be strictly positive can be replaced 

positive, q has positive imaginary part km, Iu[ must be zero. 

by smoothness assumptions on nz and m. 

Appendix 3. Properties of the scattering operator 

In appendix 1 we saw that an incident field in H1~”(R3), s > l j2 ,  gives rise to a scattered 
field in the same space. Because these spaces are weighted only in the x3 variable, the 
restriction of a function in such a space to any horizontal (i.e. fixed x3) plane is in H1/2(Rz) 
(Adams 1975). The Fourier transform of this space is 

L;,z(Rz) = (U(6) : (1 + 1g2)% E L2nsZ)l. 

Thus the operator 5 maps L&(Rz) to itself. 
With this information, equation (3.3) can be interpreted as follows. Since both ii and 

multiplication by ih, are maps from LTi2 to L5,/2,  each side of equation (3.3) is a map on 
L$2 followed by a map from L:,z to L-I,2. 

Theorem. The projection Pip of the scattering operator onto (f : (k2 - 1f12)1/4f(6) E 
Lz([el < k )  has norm less than one. 

Proof. We use the energy identity (A1.23) applied to a region that in the limit becomes 
the entire lower half-space. In the right-hand side we use expression (A1.24), where, on 
the surface x3 = 0, 

!k 0) = (if)(O + fO). (A3.1) 

The energy identity thus becomes 
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Here we assume that f is zero for ]$I > k. Thus the right-hand side of (A3.2) reduces to 

(A3.3) 

The imaginary part of this expression is hl,<k(lif($)lz - If($)lz)de, which must be 
~0 negative since the left-hand  sid de of (A3.2) is negative. 
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