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Synthetic Aperture Inversion for Arbitrary
Flight Paths and Non-Flat Topography

Clifford J. Nolari and Margaret Chen&ly Member, |IEEE

Abstract—This paper considers Synthetic Aperture 4
Radar and other synthetic aperture imaging systems in e
which a backscattered wave is measured from positions
along an arbitrary (known) flight path. We assume a single- ©
scattering model for the radar data, and we assume that

the ground topography is known but not necessarily flat.
We focus on cases in which the antenna footprint is
so large that the standard narrow-beam algorithms are
not useful. We show that certain artifacts can be avoided
if the antenna and antenna footprint avoid particular
relationships with the ground topography. In this case,

we give an explicit backprojection imaging algorithm that . .
corrects for the ground topography, flight path, antenna case for foliage-penetrating radar [38] [39], whose low

beam pattern, source waveform, and other geometrical frequencies do not allow for much beam focusing.
factors. In the case of a non-directional antenna on a straight-
For the case of a non-directional antenna, the image line flight track above a flat earth, it is not possible
produced by the above algorithm contains artifacts. For to determine from the data whether a given reflection
this case, we analyze the strength of the artifacts relative originated from the left or the right side of the flight
to the strength of the true image. The analysis shows that {rack. This gives rise to an image artifact which we call
the artifacts can be somewhat suppressed by increasingyn ampiguity artifact Similar ambiguity artifacts arise
the frequency, integration time, and curvature of the flight . .
path. in the case of curved fllg.ht paths_ and non-flat .e_arth
topography. One goal of this paper is to give conditions
Index Terms—SAR, FOPEN, nonlinear flight path on the relationship between the antenna footprint, the
flight path, and the topography for which these ambiguity
artifacts do not arise.
We consider imaging algorithms based on backprojec-
In Synthetic Aperture Radar (SAR) imaging [8] [11kion. Such algorithms produce an imagevia
[13] [15] [39], a plane or satellite carrying an antenna
moves along a flight path. The antenna emits pulses of I(z) = /w(z’ s,t)d(s,t)dsdt (1)
electromagnetic radiation, which scatter off the terrain,
and the scattered waves are measured with the samfered denotes the data, which depends on tirend
antenna. The received signals are then used to prodac#light path parametes, and w denotes a weighting
an image of the terrain. (See Figure 1) function that will be explained in the text. This weight-
The nature of the imaging problem depends on tlieg function w depends on factors such as the flight
directivity of the antenna. We are interested particularfyath and on the topography, and compensates for the
in the case of antennas with poor directivity, whergntenna beam pattern, the source waveform, and other
the antenna footprint is large and standard narrow-beg@eometrical factors.
imaging methods are not useful. This is typically the For an imaging algorithm such as (1), the images
related to the desired ground reflectivity functighby
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Fig. 1. Acquisition geometry for SAR with an antenna with poor
directivity

I. INTRODUCTION
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Consequently, the imagk has the property that certainformula reduces to the exact inversion formula of [14]
features such as edges and boundaries between diffef&} [25] for the case of a perfect point source moving
materials are positioned correctly and have the corredong a single straight flight track above a flat earth.
amplitudes. We use the capital lette§ andY for spatial variables

In the case when ambiguity artifacts are unavoidablie, R, when there is danger of confusion between two-
we analyze the strength of these artifacts relative to tdeanensional and three-dimensional vectors; the corre-
strength of the true image. Our analysis shows that tepondingxz and y denote the projections ok and Y
artifacts can be suppressed to some degree by increasingp R2.
the the curvature of the flight track, increasing the
frequency, and increasing the integration time. I[I. THE MATHEMATICAL MODEL

The paper is organized as follows. Section 2 intro- For SAR, the correct model is of course Maxwell’'s

duces the mathematical model and relevant notatiqQy, ations, but the simpler scalar wave equation is com-
Section 3.1 develops the image formation algor'th%only used:

explains how the weightv should be chosen, gives

conditions for avoiding ambiguity artifacts, and displays <v2 1 at2> u(t, X) =0, (3)
computational examples showing the importance of the (X)

correct weighting factow. Section 3.2 analyzes the caseherec is the wave propagation speed. Each component
in which ambiguity artifacts are unavoidable and givesf the electric and magnetic fields in free space satisfies
examples showing how the artifact is smeared as t(8); thus it is a good model for the propagation of
curvature of the flight path is increased. electromagnetic waves in dry air.

The paper concludes with two appendices. The firstWe assume the earth’s surface is located at the position
states the stationary phase theorem, which is used repgaten by X = v (x), wherev : R*> — R3 is known.
edly in the paper, and gives some technical details ©ecause electromagnetic waves are rapidly attenuated
garding one of the conditions on the relationship betweénthe earth, we assume that the scattering takes place
the topography and the flight path. The second appendlixa thin region near the surface; thus we assume that
outlines the formulas used to generate the computatiotiaé perturbation in sound speeds of the formc,? —
examples. ¢ 2(X) = V(2)6(X — (x)). Herecy is the speed of

The methods we use in this paper are based light in dry air, andV, the ground reflectivity function
microlocal analysis [12] [18] [35], which is a theory foris the quantity we wish to image.
dealing with oscillatory integrals and singularities. These We show in [28] that the received field at sensor
microlocal methods enable us to reconstruct edges dodation Y and time ¢t can be approximated by the
boundaries between different materials in the scatterisgpression
region [4] [3] [6] [22] [26] [29][30]. These edges and ,
boundaries correspond mathematically to singularities $hY-t) = /G_M(t_Qlw@)_Y'/CO)W(lB, Y, t,w)V (z)dwd’z,
the reflectivity function; an image of these singularities 4
gives us an image of structures such as walls amdhere w denotes the angular frequenclly contains
vehicles. The microlocal approach has the advantageometrical factors such as the antenna beam pattern
of providing reconstruction formulas even in the casand ther—2 attenuation from geometrical spreading, and
when the data are incomplete and non-ideal. In additidncludes also the Fourier transform of the time-domain
these methods can accommodate the varying antemvaveform sent to the sensor. Because this waveform
beam patterns that arise in the cases of non-ideal anteim&andlimited, ultimately we reconstruct band-limited
motion and gain, and with appropriate adjustments tl@proximations to singularities rather than the actual
same reconstruction formulas apply to both spotlightingularities.
mode [9] and stripmap-mode radar [13] [15]. Microlocal The idealized inverse problem is to determiridrom
reconstruction techniques have been used to advantagkrnowledge ofS for ¢ € (137,7%) and forY on a curve.
the geophysics community, where they have been foulitis curve we parametrize by:= { v(s) : smin < s <
to be fast and robust [4] [6]. Smax - We will write R, ;, = ¢(x) — (s).

Microlocal methods have the limitation that they can The abrupt ends of the curvwetend to cause artifacts
only be expected to provide a reconstruction of singuldn the image; consequently it is useful to multiply the
ities and their strengths. However, in practice they oftetata by a smooth tapern(s,t) which is zero outside
reduce to the exact inversion formulas that are known fthre region in(s, ¢t)-space where we have data. The taper
idealized cases. This is the case here: our reconstructionction must have an additional property: it should also
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be zero on the set The kernel K7 is the imagingpoint-spread function
{(s,t) : for somez, t = 2|R,,|/co and R, ,-Dy(xz) = which, when considered as a function of the variahle

0}, where Dy denotes the3 x 2 Jacobian matrix. is the reconstructed (backprojected) image due to a delta
In other words, we must avoid local minima of theoint source located at If we hadK;(z,z) = §(z—x),
traveltime. This assumption, which for example in th#hen the imagé would be perfect; we want to determine
flat-topography case prevents us from trying to image so that/; comes as close as possible to being a delta
directly under the antenna, is needed to avoid a nhumifenction.

of technical difficulties. In (8), we perform a larges stationary phase calcu-
We denote the map from scefméto datad = ms by lation in the variableso andt. (Specifically, we make
F, where the change of variables = wv and perform a large-

w stationary phase calculation in the variablesand

t. We can apply the stationary phase theorem because

- /e‘i“(t‘mRsm‘/CO)A(a:,s,t,w)V(x) dwd®*z,  repeated integration by parts in thevariable shows
that away fromv = 1, the integrand decays rapidly

where A includes the taper function, antenna beam w, so the leading large- behavior is determined
pattern, the transmitted waveform, geometrical spreadigg a compact neighborhood of — 1. A statement of

factors, etc. the multi-dimensional stationary phase theorem is given

We need the following assumption in order to make, Anjendix A) After substituting the stationary phase
various stationary phase calculations hold; in fact thrlgSult into (8) and (2), we obtain

assumption makes the “forward” operatbra Fourier
Integral Operator [12], [35], [18]. I(z) = / K(z,2)V(z) do + B1(2) )
a) Assumption:The amplitudeA of (5) satisfies :

sup | 02929000 982 A(x, 5, t,w) |
(s,t,x)eK

d = F[V](s,1) (5)

whereFE; denotes a function smoother than the first term
on the right side of (9) and

< C (14 w?)@lab/2 ©)  KGz) = on [e2Ral R/ @y 5 w)

where K is any compact subset &, x R; x R2, and Az, 8,2|Rs 2| /co,w) dwds. (10)

the constantC' depends orK, «, 3, 6, p1, and ps. ] o N
The main contributions t& come from those critical

waveformp is a short pulse and the antenna is suffine criticality conditions are

ciently broadband. We note thdtcan be complex; it can

thus be used to model non-ideal antenna behavior such _Bsel = | Bsal
as phase aberrations and frequency-dependent changes Rsz-9(s) = Rsaz-(s). (11)
in the beam pattern. The first condition of (11) says that should be at the

1. | MAGE FORMATION same range as The second says that the directiB/gfx
' should have the same projection onto the flight velocity
We form the image by means offitered backprojec- vector as the directionﬁ; .
tion operator: b) Definition: We will call (s, z, z) a contributing
iw(t—2|R, .|/ co critical point if it satisfies both conditions of (11) and if
I(z) = /Q(z’s’t’w)e (A d(s,1) dwdsdt, A(z,s,2|Rs 4| /co,w) is nonzero for some (and hence,
( by assumption (6), for a large interval o).

whereQ is determined below. _ For a high-fidelity image, we would likeX to be
To determin&, we investigate the degree to which theq ¢|nse as possible to the delta functifiy — z)

image faithfully reproduces features of the ground ref exp(i(z —x) - €)d¢. In particular, we should have con-
flectivity function V. We will show that under favorabletributing critical points only wher = z. In other words

circumstances, s_ingular features such as edges appeg 13,2, 2) satisfies (11) when # z, the amplitudeA
the correct locations. , , should be zero there. Flight paths for which this is the
Usingd = F[V] in (7) results in an equation of the aqe can be found when the the antenna beam pattern is
form (2), where sufficiently focused to one side of the flight heading.
Ki(z,z) = /Q(Z,s’w)eiw(t—Q\Rs,z\/co) I_:or example, in_ thg case of' flat topography, there are
points (s, z, z) satisfying (11) in two cases, one when
e WU AR el o) Az 5 ¢, @)dE dw ds dt. (8) = = z and the other when is at a “mirror” point
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x*, which is the reflection ofr across the horizontal In a neighborhood ot = x, we make the change of
projection of the line tangent to the flight path-ats). variables

This “mirror” critical point contributes to the image, (s,w) = & =Z(z,z,5,w). (15)
and hence gives rise to an ambiguity artifact, unless the

amplitudeA is zero there. To make the amplitudezero For. the case of §traight flight paths, this c_hange of
at all such “mirror” points, the antenna beam should B/é"trlables is essentially the same change of variables used

negligible to one side of the flight direction [16]. I w-k migration [10], [23]. We do not actually use this

We show in the next section that the conditions fdi@nge of variables to form the image; instead we form

obtaining an image that is faithful (in a specific sen§5'e imagg by (7) and use the change of yariables only
discussed below) are the following. to determine the correct form of the amplitude We

1) The only contributing critical points are those foPOte t_hat this change of variables (15) can be done for
which z = = any flight path.

2) At no point z in the antenna footprint should The change of variables (15) transforms the integral

the earth’s surface be perpendicular to the plar(%) into
formed by the the range vectét , and the flight ;) — or =D (2, 5,w) A(x, 8, 2| Re | /0, w)
velocity vector+(s). This should hold for every d(s,w)

position(s) along the flight path. . ‘ 875

(z,x,8,w)V(z) d*¢ d*z + Fy(2).
(16)

If condition 1 is violated, ambiguity artifacts appear in
the image. If condition 2 is violated, “layover” occurdVhere s and w are understood to refer te(¢) and

in the image: nearby points on the earth’s surface aréS). respectively. This exhibits the operator with kernel
mapped to the same point in the image. K as a pseudodifferential operator. Pseudodifferential

We show in sections 3.1.1 and 3.1.2 that when ti@erators have thpseudolocalproperty [35], i.e., they

above conditions are satisfied, the point spread functiffi N0t move singularities or change their orientation.
K is, to leading order i, a band-limited delta function.  The Jacobian determinafi(s,w)/d¢| is also called
This implies that the image formed by (7) exhibits thé® Beylkin determinant4] [6]. When = = 2, its
same singularities (such as edges) that are visible in fi§§iProcal is given by

sceneV. Moreover, the strengths of these singularities ’ ¢ (2, 2,8 w) =

(such as the magnitude of the jump across an edge) is /\a(s,éiz ) o o9(2) 17

preserved in the image. dw | —Jis\,z ’ 68z1 Py(s) - 8azl) | (17)

@ _Rs,z ’ gz(j) PL’Y(S) ’ gz(f

A. The case of no ambiguity artifacts whereP, 5(s) denotes the scaled projectionfs) onto
We show in this section that under the above condhe plane perpendicular to(s) — ¢(2):

tions for avoiding ambiguity artifacts, a certain change N el el

of variables makes the phase{ z, z) the same as that PiA(s) = (s) — Bse (RS’Z WS)) (18)

of the delta functiond(z — z) o [exp(i(z — x) - £)dE. | Rs.2|

1) The change of variablesTo determine the changewe note thatP, 4(s) remains in the pland’, . defined
of variables that makes the phase &finto the phase |, ’

of a delta function, we first use the integral form of the T, := Span {R,;,%(s)}. (19)
remainder for Taylor's theorem to write the imaginary
part of the exponent of (10) as Conditions under which the change of variables (15)

can be made (locally) are those under which the right
20(|Rsal = |Rsz])/co = (2 —2) - E(z,2,8,w); (12)  gide of (17) is nonzero; this gives us the second condition
on the relation between the flight track and the ground
topography. This condition can be understood by noting
d\  (13) that the_ vectors??;_ and P, 5(s) are orthogonal and thus
z—1) determine a coordinate system in the pldihe; the rows
&f (17) are the coordinates of the tangent vecti§irs=
O/0z and X2 = 0/dz in this coordinate system.
- Thus the right side of (17) is nonzero providad and
E(z,2,5,w) = (—2w/co)Rs > - DY(2). (14) X? project to two linearly independent vectors in the

explicitly, = is given by

_ 2w 1
E(z,z,8,w) = ——/ V|Rsy|
co Jo

y=z+(

where the differentiation on the right side is with respe
to y, so thatVR, , = R, ,. Whenz = z, (13) is simply
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c) Example: flat topography, circular flight path:
Circular flight paths have been considered in [31]. For
a flight path that is a circle of radiug, with arc-length
parameterization, at the origin we have

_CO‘” (cos(s/R),sin(s/R)),  (22)

X, =(0,0,s,w) =
which implies that the magnitude of the Beylkin de-
terminant at the origin is|0¢/0(s,w)[(0,0,s,w) =
2w(coR)_1.

2) Choice of the amplitud€): Equation (16) shows

Fig. 2. Geometry for the Beylkin determinant for the flat-topographf]oW we should choos€ to make K an approximate

straight-flight-path case. delta function. In particular, we should choose

Qv = = bx(z,as,w)) 23)
planeT, .. In Appendix A we show that this condition (2m)3 b(z, 2, £(5,w))
is equivalent to the condition that the earth’s surface where x is a smooth cutoff function that prevents us
z not be orthogonal to the plarig .. from dividing by zero, and where
a) Example: flat topography:in the case of flat 2R, . B(s w
topography, the tangent line to the flight track (whose bz, 2, £(s,w)) = A (x’s’ lCo' l’w> ‘ (86 )‘ (z,x,s,w;4
direction is given by the flight velocity vector) projects (24)
to a straight line on the earth. If the antenna’s footprint ig/ith the choice (23) and change of variables (15), (10)
strictly to one side of this line, then contributing criticabecomes
points occur only whern: = z. If, in addition, the 1 ‘ bz, 2, £)
flight velocity vector is never vertical, then the plane K(z,z) = 52 /ez(z_””)fﬁx(z,g)d%. (25)
T, is never vertical, and thus condition 2 for avoiding (2m) (2,2,4)
ambiguity artifacts is satisfied. Since the leading order contribution to (25) iszat =z,
For flat topography, the Jacobian matfix is simply We see that{ is an approximate delta function.
a) Example: flat topography, straight flight track:
10 For the purely two-dimensional case of a straight flight
Dy=1|0 1 |, (20) track along ther, axis, theb that should be used in (23)
0 0 IS

— CO‘RS,Z’A(Zv372‘Rs(§),z|/60>w)
which implies that=(z, 2, s,w) = (—2w/co)PiaR.. | b(z,2,§) = 2%, (26)

where P, » denotes the operator that projects a three- L .
dimensional vector onto its first two components. where it is understood that theands appearing on the

b) Example: flat topography, straight flight path: right side of (26) is shorthand notation for the functions
Previous work [i] [19] [25] has 1considered the purélw(g) ands(¢). The corresponding filter used in [1] [19]

- - - - 1 _
two-dimensional case in which the flight track is the E’ZS]”I]SIS |inst[1hee ns;?ntfnags(zg)hﬁre’tog?}gjyfa(czt;ft)h;t are
axis. In this caseDy is the 2 x 2 identity matrix; the >’ P

ignored in [1] [19] [25], such a®/cy, the geometrical

L
tW(.) columns of (17) are orth_ogonal, and the first s fgctorW, the source waveform, and the tapem. Thus
unit vector. The determinant is therefore the magnitude

of the second vector, which i, 4| = (cos 6)/|R.., Yxseizﬁ);h%rﬂjr;s case, formula (7) reduces to the exact
whered is the angle formed by the flight track(the x, '

axis) and the line perpendicular I . From figure 2we  3) Numerical ExamplesFigure 3 shows a test scene,
see also thatos 0 = 2z /| R .| Then, from (14), we have for a flat earth, on which are superimposed the flight
that; = (2w/cp) cos 6. Thus on the diagonal = x, the paths we use in this paper. We assume a perfect isotrop-

reciprocal of the Beylkin determinant is ically radiating antenna, so that = 1. Figure 4 shows
synthetic data generated from this scene. Figure 5 shows
‘ 08 (2,2, 8,w) = 260 _dw oz . (21) thereconstruction when the Beylkin determinant is omit-
(s, w)| 77 co|Rss| ¢ |Rszl ted; figure 6 shows the reconstruction including the

Beylkin determinant. All images have been normalized
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Fig. 3. The test scene and three flight paths.

Fig. 6. The reconstructed image when the Beylkin determinant is
included. Note that the strength of the weaker target is more nearly
w Straight-line data: Ns=50, ds=0.8, Nt=50, dct=0.54 x10° correct than in Figure 5.
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Fig. 4. Synthetic data for a straight flight track flight. [ — : et =

Fig. 7. Slices through the images of Figures 3 (solid line), 5 (dotted

so the maximum reflectivity isl. Figure 7 shows a M) and 6 (dashed line).

comparison of slices through all three images.
We see that including the Beylkin determinant resuIE

in an image whose reflectivities are (almost) in the

correct relation to each other (see Figure 7), whereadn this section, we discuss the effect of an antenna with

omitting the determinant results in an image in whicRoor directivity, where (11) has more than one solution

the relationship is incorrect. in the support ofA. _ o
We note that a straight flight path and isotropic We form an image by the same filtered backprojection

antenna radiation pattern results in artifacts that afeethod (7) asin the high-directivity case. In other words,
perfectly symmetrical with respect to the flight path. We use the same Beylkin determinant weighting for the
whole image, even though this determinant does not

correspond to the change of variables (15) whea z.
1) Analysis: As before, the main contributions &
come from the critical points (11) in the support 4f

Ambiguity artifacts

Straight-line inversion: Ns=50, ds=0.8, Nt=50, dt=0.54

30— —— iy e g | 1

» o In the flat-earth case, we saw that there are two points
N o z on the earth for which(s, z, ) satisfies (11): one at
o z = x, which gives rise to the correct image, and one
€ @ w " " 05

at a “mirror” point, which can give rise to an artifact.
For non-flat topography, it is possible to have a curve of
points z on the earth for which(s, z, z) satisfies (11).
Such a curve is composed of points at the same range
L] |R..| whose directionsR, . have the same projection
onto the flight velocity vectof(s).

Fig. 5. The reconstructed image when the Beylkin determinant is We refer to contributing critical points for which #
omitted. Note the ambiguity artifacts here and in Figure 6. x as “extraneous” critical points; it is these critical points

- -20 =15 =10 -5 o 5 10 15 20
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(r,z,s,w)dwds

\a
Equations (28) and (29) tell us the degree to which a
point scatterer at creates an artifact at the point We
. . . see that the strength of the artifactzatan be decreased
Fig. 8. A case when there is a curve of poiatsn the ground for . - . . .
which (s, z, z) is critical. In this slice, the entire valley floor consistsby increasingy”; ¢ can be increased by increasing the
of critical points. curvature of the flight track. The strength of the true
image atr, moreover, can be increased by increasing the
length of the flight path for which: is in the antenna
that give rise to the ambiguity artifacts. We analyze ttfeotprint.
relative contributions to the image from these points by 2) Special Cases:
investigating the size ok there. a) Straight flight path:The stationary phase reduc-
At an extraneous critical points, z, z), we consider tion (28) cannot be carried out for a straight flight path; if
the kernel of (10), and carry out a largestationary the antenna beam pattern is isotropic, then by symmetry
phase analysis in the variable. We denote by the the artifacts are symmetric with respect to the flight path.
phase of (10). Figure 6 shows an example of this phenomenon.
We can carry out the stationary phase reduction with b) Circular flight path: For a flight path that is
respect tos at an extraneous critical point only wheran arc of lengthL of a circle with radiusR and an
the Hessian of the phase function with respecttis isotropic antenna beam pattern, a scatterer at the origin
non-degenerate. At a point satisfying both equations gives rise to artifacts that form a circular arc with radius

(112), this Hessian is 2R. We can calculate the strength of these artifacts
— . by computing 5(s) = ( (s)/R), where R(s) =
i o - . 1) =
#'(2r5,0) =2 Boz = Boa ) i) /eo- @) (0os(s/R) sin(s/R).0), Res — Rin = 2R(s), and
We note that this Hessian is always zero when- z; ¢"(2,5,0) = 2/(coR). ThUS the artifacts, to leading

thus this stationary phase reduction can never be dsnéer, have strength
at the true image point. Similarly, the Hessian is always i /4 9w \ 1/2
zero for a straight flight path (assuming thais an arc- K(z,0) ~ CEE / (c R) dw
length parameterization). 0

On the other hand, if the earth and flight track arbhe image at the origin, on the other hand, is (to leading
level, and the flight track is curved, the®, . — R, is ©rdern

(30)

roughly co-linear with¥(s), so that the Hessiam” i K(0,0) ~ 1/ ( 2w ) dwds

nonzero at extraneous critical points. In this section, we ’ (2m)? coR

consider the generic case when the Hessian is nonzero. ~ L/ ( 2w ) do. (31)
At extraneous critical points(z,z) for which the (2m)2 ) \coR

Hessian is nonzero, we can apply the stationary phage see that the ratio of artifact to true image is
theorem (see Appendix A). We obtain to leading order

1/2  3/2 3/2
of approximation |K(2,0)] _ 4(rcoR) 12 W3 — w (32)
K(z,z) 372 1/2 A, 5, 2| Byol/ 0, where wy; and w,, denote the (effective) maximum
(2m) M A Z 8 2 Rs 2|0, ) and minimum angular frequencies of the radar. We see
(z E(s,w) g q :

TR S) a<s w) (2,2,8,w)dw (28)that the artifact can be minimized by increasing the
T curvature (decreasing), increasing the path length,

where s is understood to refer te(z,z), which is and increasing the frequency.

determined by solving the second equation of (11) for 3) Numerical Examples:Figure 9 shows a recon-

s in a neighborhood of a poirs, z, z) for which (11) struction from the slightly curved flight path visible in

holds. Figure 3; Figure 10 shows a reconstruction from the
On the other hand, if we consider the reconstructigiore curved path. We see that as the curvature of the
atx we find flight path increases, the artifacts become weaker and
K(z,) 1 / (2, £(5,w)) less localized. The weaker artifacts for the flight path
’ (27)2 XA 6155 with higher curvature are predicted by (28).
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Fig. 9. This shows the reconstructed image from the flight path APPENDIX
x = .01y>. Note that the artifacts are weaker and more smeared th’g‘n Some technical details
in Figure 6. ’

1) The method of stationary phas&he stationary
phase theorem [18] [5] states
I‘ a) Theorem:If « is a smooth function of compact

Parabolic inversion: a=0.04, Ns=50, ds=0.8, Ni=50, dct=0.54

30— -

support onR™, and ¢ has only non-degenerate critical
points, then asv — oo,

. s /2 iwe(z°
feuuqﬁ(w)a(x)dnx: Z{xO:D¢($O):O} (%) e #(z°)

o cag0) Doy —(n—2)/2
. U)o T O )

. (33)
. Here D¢ denotes the gradient ¢f and D?¢ denotes the

. Hessian.

2) Conditions on planesWe denote byP, the op-
Fig. 10. ' This shows the reconstructed image from the flight pagrator that projects a vector onto the plane with normal
x = .04y“. The artifacts are weaker and more smeared than in eit . e ; ; Y _ (.
Figure 6 or Figure 9. r\;F((:S)ctorz/, specifically, P, is given byP, X = X — 0(v
a) Proposition: SupposeX' and X? are linearly
independent vectors in the plane with normial Then
the vectorsP, X' and P, X? are linearly independent if

We have exhibited a filtered backprojection algorithrignd only if - 7 # 0.
for SAR imaging from arbitrary (known) flight paths Proof. Suppose first that - 72 # 0. The issue of
and non-flat (known) earth topography. The analysis h#ear independence aP, X' and P| X* requires that
given conditions on the relationship between the flighe consider the conditio = ¢;P1 X' + c2P1 X? =
path, the antenna beam pattern, and the earth topographyc1 X' + c2X?). We denote byy” the linear combi-
under which the image contains no ambiguity artifacf@tionci.X' + ¢ X?. Then sincei - X! =0 =7 - X?,
and no layover artifacts. When these conditions af¢ also havei-Y = 0. - .
satisfied, backprojection produces an image in whichFrom the formula forP,, the condition0 = P, Y is
edges appear in the correct position and orientation; wiquivalent to
the proper filter, jumps across edges are also of the Y =0(0-Y), (34)
correct magnitude. When the flight path, antenna beaghich also implies that = 7 -Y =7 - v(0-Y). From
pattern, and earth topography are such that ambiguifiis we see that -7 # 0 implies7-Y = 0. But then we
artifacts are present, the strength of these artifacts gase from (34) that” must be zero, which by the linear
be affected by the curvature of the flight path, pathdependence ak' and X? also implies that; = ¢y =
length (integration time), and frequency. More highly. ThereforeP, X' and P, X? are linearly independent.
curved flight paths smear the artifacts and decrease theiNext suppose that - 7 = 0. Then every vectorX
magnitude. with 7 - X = 0 projects to a vectol” = P, X with the

We leave to the future the problem of finding aproperty thath-Y =0 and? - Y = 0. All such vectors
algorithm to pick out a flight path that minimizes th& are multiples of each other; thug, X! and P, X?
ambiguity artifacts. are linearly dependent. QED

0 s 10 -5 [ 5 10 15 20
x(m)

IV. CONCLUSIONS
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B. The numerical examples

1) Straight flight path: The straight flight path pa-
rameterized as; = 0, x2 = s; Datad(t, s) for it were
generated by the formula

d(r,s) =r" /V(r cos b, s+ rsinf)db

(35)

which was implemented with the Matlab “quad” routine.
The formula for the image at coordinatés, x) is

I(xy,x2) :/e‘iQka%(“_s)QQkxl/eiwtd(t,s)dtdwds.

(36)

This was implemented in Matlab by an FFT the
variable, followed by multiplication bk = 2w /¢ (part
of the Beylkin determinant) followed by an inverse FFT. [13
This was followed by multiplication byr; (the other
part of the Beylkin determinant) to obtain the back- [14]
projected data from one positionon the flight track.

Nearest-neighbor interpolation was used to determin

(6]

(7]
(8]
El

(10]

(11]

(12]

15]

the appropriate data point to use for each pixel. Finally, [16]
contributions from all positions are added together to
build the image.

The reconstruction code ran in a matter of minutes|;7
for problems of sizel00 x 100. No attempt was made
to optimize for speed.

2) Parabolic flight path: Parabolic flight pathg; =

ar3 were parameterized as;, =
for theses paths were generated by implementing the

as?®, ro = s. Data

formula

d(r,s) =" /V(as2 +rcosf,s+rsinf)dd (37)

The formula for the reconstruction is

I(:Cl, $2) = /e_izk\/($1—a52)2+(x2_s)z

2k[2as(xy — s) — (x1 — as?)] /ei“’td(t, s)dtdwds, (38)

which was implemented as discussed above.

(1]

(2]
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