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Synthetic Aperture Inversion for Arbitrary
Flight Paths and Non-Flat Topography

Clifford J. Nolan† and Margaret Cheney∗‡, Member, IEEE

Abstract— This paper considers Synthetic Aperture
Radar and other synthetic aperture imaging systems in
which a backscattered wave is measured from positions
along an arbitrary (known) flight path. We assume a single-
scattering model for the radar data, and we assume that
the ground topography is known but not necessarily flat.

We focus on cases in which the antenna footprint is
so large that the standard narrow-beam algorithms are
not useful. We show that certain artifacts can be avoided
if the antenna and antenna footprint avoid particular
relationships with the ground topography. In this case,
we give an explicit backprojection imaging algorithm that
corrects for the ground topography, flight path, antenna
beam pattern, source waveform, and other geometrical
factors.

For the case of a non-directional antenna, the image
produced by the above algorithm contains artifacts. For
this case, we analyze the strength of the artifacts relative
to the strength of the true image. The analysis shows that
the artifacts can be somewhat suppressed by increasing
the frequency, integration time, and curvature of the flight
path.

Index Terms— SAR, FOPEN, nonlinear flight path

I. I NTRODUCTION

In Synthetic Aperture Radar (SAR) imaging [8] [11]
[13] [15] [39], a plane or satellite carrying an antenna
moves along a flight path. The antenna emits pulses of
electromagnetic radiation, which scatter off the terrain,
and the scattered waves are measured with the same
antenna. The received signals are then used to produce
an image of the terrain. (See Figure 1)

The nature of the imaging problem depends on the
directivity of the antenna. We are interested particularly
in the case of antennas with poor directivity, where
the antenna footprint is large and standard narrow-beam
imaging methods are not useful. This is typically the
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Fig. 1. Acquisition geometry for SAR with an antenna with poor
directivity

case for foliage-penetrating radar [38] [39], whose low
frequencies do not allow for much beam focusing.

In the case of a non-directional antenna on a straight-
line flight track above a flat earth, it is not possible
to determine from the data whether a given reflection
originated from the left or the right side of the flight
track. This gives rise to an image artifact which we call
an ambiguity artifact. Similar ambiguity artifacts arise
in the case of curved flight paths and non-flat earth
topography. One goal of this paper is to give conditions
on the relationship between the antenna footprint, the
flight path, and the topography for which these ambiguity
artifacts do not arise.

We consider imaging algorithms based on backprojec-
tion. Such algorithms produce an imageI via

I(z) =
∫
w(z, s, t)d(s, t)dsdt (1)

whered denotes the data, which depends on timet and
a flight path parameters, and w denotes a weighting
function that will be explained in the text. This weight-
ing function w depends on factors such as the flight
path and on the topography, and compensates for the
antenna beam pattern, the source waveform, and other
geometrical factors.

For an imaging algorithm such as (1), the imageI is
related to the desired ground reflectivity functionV by

I(z) =
∫
KI(z, x)V (x)d2x. (2)

In the case in which ambiguity artifacts can be avoided,
we show thatKI is approximately a delta function.
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Consequently, the imageI has the property that certain
features such as edges and boundaries between different
materials are positioned correctly and have the correct
amplitudes.

In the case when ambiguity artifacts are unavoidable,
we analyze the strength of these artifacts relative to the
strength of the true image. Our analysis shows that the
artifacts can be suppressed to some degree by increasing
the the curvature of the flight track, increasing the
frequency, and increasing the integration time.

The paper is organized as follows. Section 2 intro-
duces the mathematical model and relevant notation.
Section 3.1 develops the image formation algorithm,
explains how the weightw should be chosen, gives
conditions for avoiding ambiguity artifacts, and displays
computational examples showing the importance of the
correct weighting factorw. Section 3.2 analyzes the case
in which ambiguity artifacts are unavoidable and gives
examples showing how the artifact is smeared as the
curvature of the flight path is increased.

The paper concludes with two appendices. The first
states the stationary phase theorem, which is used repeat-
edly in the paper, and gives some technical details re-
garding one of the conditions on the relationship between
the topography and the flight path. The second appendix
outlines the formulas used to generate the computational
examples.

The methods we use in this paper are based on
microlocal analysis [12] [18] [35], which is a theory for
dealing with oscillatory integrals and singularities. These
microlocal methods enable us to reconstruct edges and
boundaries between different materials in the scattering
region [4] [3] [6] [22] [26] [29][30]. These edges and
boundaries correspond mathematically to singularities in
the reflectivity function; an image of these singularities
gives us an image of structures such as walls and
vehicles. The microlocal approach has the advantage
of providing reconstruction formulas even in the case
when the data are incomplete and non-ideal. In addition,
these methods can accommodate the varying antenna
beam patterns that arise in the cases of non-ideal antenna
motion and gain, and with appropriate adjustments the
same reconstruction formulas apply to both spotlight-
mode [9] and stripmap-mode radar [13] [15]. Microlocal
reconstruction techniques have been used to advantage in
the geophysics community, where they have been found
to be fast and robust [4] [6].

Microlocal methods have the limitation that they can
only be expected to provide a reconstruction of singular-
ities and their strengths. However, in practice they often
reduce to the exact inversion formulas that are known for
idealized cases. This is the case here: our reconstruction

formula reduces to the exact inversion formula of [14]
[19] [25] for the case of a perfect point source moving
along a single straight flight track above a flat earth.

We use the capital lettersX andY for spatial variables
in R3, when there is danger of confusion between two-
dimensional and three-dimensional vectors; the corre-
spondingx and y denote the projections ofX and Y
onto R2.

II. T HE MATHEMATICAL MODEL

For SAR, the correct model is of course Maxwell’s
equations, but the simpler scalar wave equation is com-
monly used:(

∇2 − 1
c2(X)

∂2
t

)
u(t,X) = 0, (3)

wherec is the wave propagation speed. Each component
of the electric and magnetic fields in free space satisfies
(3); thus it is a good model for the propagation of
electromagnetic waves in dry air.

We assume the earth’s surface is located at the position
given byX = ψ(x), whereψ : R2 → R3 is known.
Because electromagnetic waves are rapidly attenuated
in the earth, we assume that the scattering takes place
in a thin region near the surface; thus we assume that
the perturbation in sound speedc is of the formc−2

0 −
c−2(X) = V (x)δ(X − ψ(x)). Here c0 is the speed of
light in dry air, andV , the ground reflectivity function,
is the quantity we wish to image.

We show in [28] that the received field at sensor
location Y and time t can be approximated by the
expression

s(Y, t) =
∫
e−iω(t−2|ψ(x)−Y |/c0)W (x, Y, t, ω)V (x)dωd2x,

(4)
where ω denotes the angular frequency;W contains
geometrical factors such as the antenna beam pattern
and ther−2 attenuation from geometrical spreading, and
includes also the Fourier transform of the time-domain
waveform sent to the sensor. Because this waveform
is bandlimited, ultimately we reconstruct band-limited
approximations to singularities rather than the actual
singularities.

The idealized inverse problem is to determineV from
knowledge ofS for t ∈ (T1, T2) and forY on a curve.
This curve we parametrize byγ := { γ(s) : smin < s <
smax }. We will write Rs,x = ψ(x)− γ(s).

The abrupt ends of the curveγ tend to cause artifacts
in the image; consequently it is useful to multiply the
data by a smooth taperm(s, t) which is zero outside
the region in(s, t)-space where we have data. The taper
function must have an additional property: it should also
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be zero on the set
{(s, t) : for somex, t = 2|Rs,x|/c0 andRs,x ·Dψ(x) =
0}, where Dψ denotes the3 × 2 Jacobian matrix.
In other words, we must avoid local minima of the
traveltime. This assumption, which for example in the
flat-topography case prevents us from trying to image
directly under the antenna, is needed to avoid a number
of technical difficulties.

We denote the map from sceneV to datad = ms by
F , where

d = F [V ](s, t) (5)

=
∫
e−iω(t−2|Rs,x|/c0)A(x, s, t, ω)V (x) dωd2x,

where A includes the taper function, antenna beam
pattern, the transmitted waveform, geometrical spreading
factors, etc.

We need the following assumption in order to make
various stationary phase calculations hold; in fact this
assumption makes the “forward” operatorF a Fourier
Integral Operator [12], [35], [18].

a) Assumption:The amplitudeA of (5) satisfies

sup
(s,t,x)∈K

| ∂αω∂βs ∂δt ∂ρ1
x1
∂ρ2
x2
A(x, s, t, ω) |

≤ C (1 + ω2)(2−|α|)/2 (6)

whereK is any compact subset ofRs ×Rt ×R2
x, and

the constantC depends onK,α, β, δ, ρ1, andρ2.

This assumption is valid, for example, when the source
waveform p is a short pulse and the antenna is suffi-
ciently broadband. We note thatA can be complex; it can
thus be used to model non-ideal antenna behavior such
as phase aberrations and frequency-dependent changes
in the beam pattern.

III. I MAGE FORMATION

We form the image by means of afiltered backprojec-
tion operator:

I(z) :=
∫
Q(z, s, t, ω)eiω(t−2|Rs,z|/c0)d(s, t) dωdsdt,

(7)
whereQ is determined below.

To determineQ, we investigate the degree to which the
imageI faithfully reproduces features of the ground re-
flectivity functionV . We will show that under favorable
circumstances, singular features such as edges appear in
the correct locations.

Using d = F [V ] in (7) results in an equation of the
form (2), where

KI(z, x) =
∫
Q(z, s, ω)eiω(t−2|Rs,z|/c0)

·e−iω̃(t−2|Rs,x|/c0)A(x, s, t, ω̃)dω̃ dω ds dt. (8)

The kernelKI is the imagingpoint-spread function,
which, when considered as a function of the variablez,
is the reconstructed (backprojected) image due to a delta
point source located atx. If we hadKI(z, x) = δ(z−x),
then the imageI would be perfect; we want to determine
Q so thatKI comes as close as possible to being a delta
function.

In (8), we perform a large-ω stationary phase calcu-
lation in the variables̃ω and t. (Specifically, we make
the change of variables̃ω = ωv and perform a large-
ω stationary phase calculation in the variablesv and
t. We can apply the stationary phase theorem because
repeated integration by parts in thet variable shows
that away fromv = 1, the integrand decays rapidly
in ω, so the leading large-ω behavior is determined
by a compact neighborhood ofv = 1. A statement of
the multi-dimensional stationary phase theorem is given
in Appendix A.) After substituting the stationary phase
result into (8) and (2), we obtain

I(z) =
∫
K(z, x)V (x) dx+ E1(z) (9)

whereE1 denotes a function smoother than the first term
on the right side of (9) and

K(z, x) = 2π
∫
ei2ω(|Rs,x|−|Rs,z|)/c0Q(z, s, ω)

·A(x, s, 2|Rs,x|/c0, ω) dωds. (10)

The main contributions toK come from those critical
points of its phase at which the amplitudeA is nonzero;
the criticality conditions are

|Rs,z| = |Rs,x|
R̂s,z · γ̇(s) = R̂s,x · γ̇(s). (11)

The first condition of (11) says thatx should be at the
same range asz. The second says that the direction̂Rs,x
should have the same projection onto the flight velocity
vector as the direction̂Rs,z.

b) Definition: We will call (s, x, z) a contributing
critical point if it satisfies both conditions of (11) and if
A(x, s, 2|Rs,x|/c0, ω) is nonzero for someω (and hence,
by assumption (6), for a large interval ofω).

For a high-fidelity image, we would likeK to be
as close as possible to the delta functionδ(z − x) ∝∫

exp(i(z−x) · ξ)dξ. In particular, we should have con-
tributing critical points only whenz = x. In other words,
if (s, x, z) satisfies (11) whenz 6= x, the amplitudeA
should be zero there. Flight paths for which this is the
case can be found when the the antenna beam pattern is
sufficiently focused to one side of the flight heading.

For example, in the case of flat topography, there are
points (s, x, z) satisfying (11) in two cases, one when
z = x and the other whenz is at a “mirror” point
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x∗, which is the reflection ofx across the horizontal
projection of the line tangent to the flight path atγ(s).
This “mirror” critical point contributes to the image,
and hence gives rise to an ambiguity artifact, unless the
amplitudeA is zero there. To make the amplitudeA zero
at all such “mirror” points, the antenna beam should be
negligible to one side of the flight direction [16].

We show in the next section that the conditions for
obtaining an image that is faithful (in a specific sense
discussed below) are the following.

1) The only contributing critical points are those for
which z = x.

2) At no point x in the antenna footprint should
the earth’s surface be perpendicular to the plane
formed by the the range vectorRs,x and the flight
velocity vector γ̇(s). This should hold for every
positionγ(s) along the flight path.

If condition 1 is violated, ambiguity artifacts appear in
the image. If condition 2 is violated, “layover” occurs
in the image: nearby points on the earth’s surface are
mapped to the same point in the image.

We show in sections 3.1.1 and 3.1.2 that when the
above conditions are satisfied, the point spread function
K is, to leading order inω, a band-limited delta function.
This implies that the image formed by (7) exhibits the
same singularities (such as edges) that are visible in the
sceneV . Moreover, the strengths of these singularities
(such as the magnitude of the jump across an edge) is
preserved in the image.

A. The case of no ambiguity artifacts

We show in this section that under the above condi-
tions for avoiding ambiguity artifacts, a certain change
of variables makes the phase ofK(z, x) the same as that
of the delta functionδ(z − x) ∝

∫
exp(i(z − x) · ξ)dξ.

1) The change of variables:To determine the change
of variables that makes the phase ofK into the phase
of a delta function, we first use the integral form of the
remainder for Taylor’s theorem to write the imaginary
part of the exponent of (10) as

2ω(|Rs,x| − |Rs,z|)/c0 = (z − x) · Ξ(z, x, s, ω); (12)

explicitly, Ξ is given by

Ξ(z, x, s, ω) = −2ω
c0

∫ 1

0
∇|Rs,y|

∣∣∣∣
y=x+λ(z−x)

dλ (13)

where the differentiation on the right side is with respect
to y, so that∇Rs,y = R̂s,y. Whenz = x, (13) is simply

Ξ(z, z, s, ω) = (−2ω/c0)R̂s,z ·Dψ(z). (14)

In a neighborhood ofz = x, we make the change of
variables

(s, ω) → ξ = Ξ(z, x, s, ω). (15)

For the case of straight flight paths, this change of
variables is essentially the same change of variables used
in ω-k migration [10], [23]. We do not actually use this
change of variables to form the image; instead we form
the image by (7) and use the change of variables only
to determine the correct form of the amplitudeQ. We
note that this change of variables (15) can be done for
any flight path.

The change of variables (15) transforms the integral
(9) into

I(z) = 2π
∫
ei(z−x)·ξQ(z, s, ω)A(x, s, 2|Rs,x|/c0, ω)

·
∣∣∣∣∂(s, ω)

∂ξ

∣∣∣∣ (z, x, s, ω)V (x) d2ξ d2x+ E1(z).

(16)

where s and ω are understood to refer tos(ξ) and
ω(ξ), respectively. This exhibits the operator with kernel
K as a pseudodifferential operator. Pseudodifferential
operators have thepseudolocalproperty [35], i.e., they
do not move singularities or change their orientation.

The Jacobian determinant|∂(s, ω)/∂ξ| is also called
the Beylkin determinant[4] [6]. When x = z, its
reciprocal is given by∣∣∣ ∂ξ

∂(s,ω)

∣∣∣ (z, z, s, ω) =

4ω
c20

∣∣∣∣∣ −R̂s,z ·
∂ψ(z)
∂z1

P⊥γ̇(s) · ∂ψ(z)
∂z1

−R̂s,z · ∂ψ(z)
∂z2

P⊥γ̇(s) · ∂ψ(z)
∂z2

∣∣∣∣∣ (17)

whereP⊥γ̇(s) denotes the scaled projection ofγ̇(s) onto
the plane perpendicular to ̂γ(s)− ψ(z):

P⊥γ̇(s) =
γ̇(s)− R̂s,z

(
R̂s,z · γ̇(s)

)
|Rs,z|

. (18)

We note thatP⊥γ̇(s) remains in the planeTs,z defined
by

Ts,z := Span {Rs,z, γ̇(s)}. (19)

Conditions under which the change of variables (15)
can be made (locally) are those under which the right
side of (17) is nonzero; this gives us the second condition
on the relation between the flight track and the ground
topography. This condition can be understood by noting
that the vectorŝRs,z andP⊥γ̇(s) are orthogonal and thus
determine a coordinate system in the planeTs,z; the rows
of (17) are the coordinates of the tangent vectorsX1 =
∂ψ/∂z1 andX2 = ∂ψ/∂z2 in this coordinate system.
Thus the right side of (17) is nonzero providedX1 and
X2 project to two linearly independent vectors in the



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 12, NO. 9, SEPTEMBER 2003 1039

!(  )

"
"

z

s

!
.

z !!
x

x

1

2

Fig. 2. Geometry for the Beylkin determinant for the flat-topography,
straight-flight-path case.

planeTs,z. In Appendix A we show that this condition
is equivalent to the condition that the earth’s surface at
z not be orthogonal to the planeTs,z.

a) Example: flat topography:In the case of flat
topography, the tangent line to the flight track (whose
direction is given by the flight velocity vector) projects
to a straight line on the earth. If the antenna’s footprint is
strictly to one side of this line, then contributing critical
points occur only whenz = x. If, in addition, the
flight velocity vector is never vertical, then the plane
Ts,z is never vertical, and thus condition 2 for avoiding
ambiguity artifacts is satisfied.

For flat topography, the Jacobian matrixDψ is simply

Dψ =

 1 0
0 1
0 0

 , (20)

which implies thatΞ(z, z, s, ω) = (−2ω/c0)P1,2R̂x,z ,
whereP1,2 denotes the operator that projects a three-
dimensional vector onto its first two components.

b) Example: flat topography, straight flight path:
Previous work [1] [19] [25] has considered the purely
two-dimensional case in which the flight track is thex2

axis. In this case,Dψ is the 2 × 2 identity matrix; the
two columns of (17) are orthogonal, and the first is a
unit vector. The determinant is therefore the magnitude
of the second vector, which is|P⊥γ̇| = (cos θ)/|Rs,z|,
whereθ is the angle formed by the flight track̇γ (thex2

axis) and the line perpendicular toRs,z From figure 2 we
see also thatcos θ = z1/|Rs,z| Then, from (14), we have
thatξ1 = (2ω/c0) cos θ. Thus on the diagonalz = x, the
reciprocal of the Beylkin determinant is∣∣∣∣ ∂ξ

∂(s, ω)

∣∣∣∣ (z, z, s, ω) =
2ξ1

c0|Rs,z|
=

4ω
c20

z1
|Rs,z|

. (21)

c) Example: flat topography, circular flight path:
Circular flight paths have been considered in [31]. For
a flight path that is a circle of radiusR, with arc-length
parameterization, at the origin we have

Ξ(0, 0, s, ω) =
−2ω
c0

(cos(s/R), sin(s/R)) , (22)

which implies that the magnitude of the Beylkin de-
terminant at the origin is|∂ξ/∂(s, ω)|(0, 0, s, ω) =
2ω(c0R)−1.

2) Choice of the amplitudeQ: Equation (16) shows
how we should chooseQ to makeK an approximate
delta function. In particular, we should choose

Q(z, s, ω) =
1

(2π)3
χ(z, ξ(s, ω))
b(z, z, ξ(s, ω))

(23)

where χ is a smooth cutoff function that prevents us
from dividing by zero, and where

b(z, x, ξ(s, ω)) = A
(
x, s, 2|Rs,x|

c0
, ω

) ∣∣∣∂(s,ω)
∂ξ

∣∣∣ (z, x, s, ω)
(24)

With the choice (23) and change of variables (15), (10)
becomes

K(z, x) =
1

(2π)2

∫
ei(z−x)·ξ

b(z, x, ξ)
b(z, z, ξ)

χ(z, ξ)d2ξ. (25)

Since the leading order contribution to (25) is atz = x,
we see thatK is an approximate delta function.

a) Example: flat topography, straight flight track:
For the purely two-dimensional case of a straight flight
track along thex2 axis, theb that should be used in (23)
is

b(z, z, ξ) =
c0|Rs,z|A(z, s, 2|Rs(ξ),z|/c0, ω)

2ξ1
(26)

where it is understood that theω ands appearing on the
right side of (26) is shorthand notation for the functions
ω(ξ) ands(ξ). The corresponding filter used in [1] [19]
[25] is, in the notation used here, simplyb−1(z, z, ξ) =
ξ1; this is the same as (26) up to the factors that are
ignored in [1] [19] [25], such as2/c0, the geometrical
factorW , the source waveformp, and the taperm. Thus
we see that in this case, formula (7) reduces to the exact
inversion formula.

3) Numerical Examples:Figure 3 shows a test scene,
for a flat earth, on which are superimposed the flight
paths we use in this paper. We assume a perfect isotrop-
ically radiating antenna, so thatA ≡ 1. Figure 4 shows
synthetic data generated from this scene. Figure 5 shows
the reconstruction when the Beylkin determinant is omit-
ted; figure 6 shows the reconstruction including the
Beylkin determinant. All images have been normalized
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Fig. 3. The test scene and three flight paths.
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Fig. 4. Synthetic data for a straight flight track flight.

so the maximum reflectivity is1. Figure 7 shows a
comparison of slices through all three images.

We see that including the Beylkin determinant results
in an image whose reflectivities are (almost) in the
correct relation to each other (see Figure 7), whereas
omitting the determinant results in an image in which
the relationship is incorrect.

We note that a straight flight path and isotropic
antenna radiation pattern results in artifacts that are
perfectly symmetrical with respect to the flight path.
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Fig. 5. The reconstructed image when the Beylkin determinant is
omitted. Note the ambiguity artifacts here and in Figure 6.
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Fig. 6. The reconstructed image when the Beylkin determinant is
included. Note that the strength of the weaker target is more nearly
correct than in Figure 5.
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Fig. 7. Slices through the images of Figures 3 (solid line), 5 (dotted
line), and 6 (dashed line).

B. Ambiguity artifacts

In this section, we discuss the effect of an antenna with
poor directivity, where (11) has more than one solution
in the support ofA.

We form an image by the same filtered backprojection
method (7) as in the high-directivity case. In other words,
we use the same Beylkin determinant weighting for the
whole image, even though this determinant does not
correspond to the change of variables (15) whenz 6= x.

1) Analysis: As before, the main contributions toK
come from the critical points (11) in the support ofA.

In the flat-earth case, we saw that there are two points
z on the earth for which(s, z, x) satisfies (11): one at
z = x, which gives rise to the correct image, and one
at a “mirror” point, which can give rise to an artifact.
For non-flat topography, it is possible to have a curve of
points z on the earth for which(s, z, x) satisfies (11).
Such a curve is composed of points at the same range
|Rs,z| whose directionsR̂s,z have the same projection
onto the flight velocity vectoṙγ(s).

We refer to contributing critical points for whichz 6=
x as “extraneous” critical points; it is these critical points
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Fig. 8. A case when there is a curve of pointsz on the ground for
which (s, z, x) is critical. In this slice, the entire valley floor consists
of critical points.

that give rise to the ambiguity artifacts. We analyze the
relative contributions to the image from these points by
investigating the size ofK there.

At an extraneous critical point(s, z, x), we consider
the kernel of (10), and carry out a large-ω stationary
phase analysis in thes variable. We denote byφ the
phase of (10).

We can carry out the stationary phase reduction with
respect tos at an extraneous critical point only when
the Hessian of the phase function with respect tos is
non-degenerate. At a point satisfying both equations of
(11), this Hessian is

φ′′(z, s, x) = 2
(
R̂s,z − R̂s,x

)
· γ̈(s)/c0. (27)

We note that this Hessian is always zero whenx = z;
thus this stationary phase reduction can never be done
at the true image point. Similarly, the Hessian is always
zero for a straight flight path (assuming thats is an arc-
length parameterization).

On the other hand, if the earth and flight track are
level, and the flight track is curved, then̂Rs,z − R̂s,x is
roughly co-linear withγ̈(s), so that the Hessianφ′′ is
nonzero at extraneous critical points. In this section, we
consider the generic case when the Hessian is nonzero.

At extraneous critical pointss(z, x) for which the
Hessian is nonzero, we can apply the stationary phase
theorem (see Appendix A). We obtain to leading order
of approximation

K(z, x) ≈ eiπ/4

(2π)3/2

∫ 1
|ω|1/2

A(x, s, 2|Rs,x|/c0, ω)
A(z, s, 2|Rs,z|/c0, ω)

· χ(z, ξ(s, ω))
|φ′′|1/2(z, x, s)

∣∣∣∣ ∂ξ

∂(s, ω)

∣∣∣∣ (z, z, s, ω)dω (28)

where s is understood to refer tos(z, x), which is
determined by solving the second equation of (11) for
s in a neighborhood of a point(s, z, x) for which (11)
holds.

On the other hand, if we consider the reconstruction
at x we find

K(x, x) ≈ 1
(2π)2

∫
χ(x, ξ(s, ω))

·
∣∣∣∣ ∂ξ

∂(s, ω)

∣∣∣∣ (x, x, s, ω)dωds

≈ 1
(2π)2

∫
χ(x, ξ)dξ (29)

Equations (28) and (29) tell us the degree to which a
point scatterer atx creates an artifact at the pointz. We
see that the strength of the artifact atz can be decreased
by increasingφ′′; φ′′ can be increased by increasing the
curvature of the flight track. The strength of the true
image atx, moreover, can be increased by increasing the
length of the flight path for whichx is in the antenna
footprint.

2) Special Cases:
a) Straight flight path:The stationary phase reduc-

tion (28) cannot be carried out for a straight flight path; if
the antenna beam pattern is isotropic, then by symmetry
the artifacts are symmetric with respect to the flight path.
Figure 6 shows an example of this phenomenon.

b) Circular flight path: For a flight path that is
an arc of lengthL of a circle with radiusR and an
isotropic antenna beam pattern, a scatterer at the origin
gives rise to artifacts that form a circular arc with radius
2R. We can calculate the strength of these artifacts
by computing γ̈(s) = −(R̂(s)/R), where R̂(s) =
(cos(s/R), sin(s/R), 0), R̂s,z − R̂s,0 = 2R̂(s), and
φ′′(z, s, 0) = 2/(c0R). Thus the artifacts, to leading
order, have strength

K(z, 0) ≈ eiπ/4

(2π)3/2

∫ (
2ω
c0R

)1/2

dω. (30)

The image at the origin, on the other hand, is (to leading
order)

K(0, 0) ≈ 1
(2π)2

∫ (
2ω
c0R

)
dωds

≈ L

(2π)2

∫ (
2ω
c0R

)
dω. (31)

We see that the ratio of artifact to true image is

|K(z, 0)|
|K(0, 0)|

≈ 4(πc0R)1/2

3L
ω

3/2
M − ω

3/2
m

ω2
M − ω2

m

, (32)

where ωM and ωm denote the (effective) maximum
and minimum angular frequencies of the radar. We see
that the artifact can be minimized by increasing the
curvature (decreasingR), increasing the path lengthL,
and increasing the frequency.

3) Numerical Examples:Figure 9 shows a recon-
struction from the slightly curved flight path visible in
Figure 3; Figure 10 shows a reconstruction from the
more curved path. We see that as the curvature of the
flight path increases, the artifacts become weaker and
less localized. The weaker artifacts for the flight path
with higher curvature are predicted by (28).
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Fig. 9. This shows the reconstructed image from the flight path
x = .01y2. Note that the artifacts are weaker and more smeared than
in Figure 6.
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Fig. 10. This shows the reconstructed image from the flight path
x = .04y2. The artifacts are weaker and more smeared than in either
Figure 6 or Figure 9.

IV. CONCLUSIONS

We have exhibited a filtered backprojection algorithm
for SAR imaging from arbitrary (known) flight paths
and non-flat (known) earth topography. The analysis has
given conditions on the relationship between the flight
path, the antenna beam pattern, and the earth topography
under which the image contains no ambiguity artifacts
and no layover artifacts. When these conditions are
satisfied, backprojection produces an image in which
edges appear in the correct position and orientation; with
the proper filter, jumps across edges are also of the
correct magnitude. When the flight path, antenna beam
pattern, and earth topography are such that ambiguity
artifacts are present, the strength of these artifacts can
be affected by the curvature of the flight path, path
length (integration time), and frequency. More highly
curved flight paths smear the artifacts and decrease their
magnitude.

We leave to the future the problem of finding an
algorithm to pick out a flight path that minimizes the
ambiguity artifacts.
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APPENDIX

A. Some technical details

1) The method of stationary phase:The stationary
phase theorem [18] [5] states

a) Theorem:If a is a smooth function of compact
support onRn, andφ has only non-degenerate critical
points, then asω →∞,∫

eiωφ(x)a(x)dnx =
∑

{x0:Dφ(x0)=0}

(
2π
ω

)n/2
eiωφ(x0)

·a(x0) eiπsgnD2φ(x0)/4√
|det(D2φ(x0))|

+O(ω−(n−2)/2)

(33)
HereDφ denotes the gradient ofφ andD2φ denotes the
Hessian.

2) Conditions on planes:We denote byP⊥ the op-
erator that projects a vector onto the plane with normal
vector ν̂; specifically,P⊥ is given byP⊥X = X − ν̂(ν̂ ·
X).

a) Proposition: SupposeX1 andX2 are linearly
independent vectors in the plane with normaln̂. Then
the vectorsP⊥X1 andP⊥X2 are linearly independent if
and only if ν̂ · n̂ 6= 0.

Proof. Suppose first that̂ν · n̂ 6= 0. The issue of
linear independence ofP⊥X1 andP⊥X2 requires that
we consider the condition0 = c1P⊥X

1 + c2P⊥X
2 =

P⊥(c1X1 + c2X
2). We denote byY the linear combi-

nation c1X1 + c2X
2. Then sincên ·X1 = 0 = n̂ ·X2,

we also havên · Y = 0.
From the formula forP⊥, the condition0 = P⊥Y is

equivalent to
Y = ν̂(ν̂ · Y ), (34)

which also implies that0 = n̂ · Y = n̂ · ν̂(ν̂ · Y ). From
this we see that̂ν · n̂ 6= 0 implies ν̂ ·Y = 0. But then we
see from (34) thatY must be zero, which by the linear
independence ofX1 andX2 also implies thatc1 = c2 =
0. ThereforeP⊥X1 andP⊥X2 are linearly independent.

Next suppose that̂ν · n̂ = 0. Then every vectorX
with n̂ ·X = 0 projects to a vectorY = P⊥X with the
property that̂n · Y = 0 and ν̂ · Y = 0. All such vectors
Y are multiples of each other; thusP⊥X1 and P⊥X2

are linearly dependent. QED
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B. The numerical examples

1) Straight flight path: The straight flight path pa-
rameterized asx1 = 0, x2 = s; Datad(t, s) for it were
generated by the formula

d(r, s) = r−1
∫
V (r cos θ, s+ r sin θ)dθ (35)

which was implemented with the Matlab “quad” routine.
The formula for the image at coordinates(x1, x2) is

I(x1, x2) =
∫
e−i2k

√
x2

1+(x2−s)22kx1

∫
eiωtd(t, s)dtdωds.

(36)
This was implemented in Matlab by an FFT thet
variable, followed by multiplication by2k = 2ω/c0 (part
of the Beylkin determinant) followed by an inverse FFT.
This was followed by multiplication byx1 (the other
part of the Beylkin determinant) to obtain the back-
projected data from one positions on the flight track.
Nearest-neighbor interpolation was used to determine
the appropriate data point to use for each pixel. Finally,
contributions from all positionss are added together to
build the image.

The reconstruction code ran in a matter of minutes
for problems of size100 × 100. No attempt was made
to optimize for speed.

2) Parabolic flight path: Parabolic flight pathsx1 =
ax2

2 were parameterized asx1 = as2, x2 = s. Data
for theses paths were generated by implementing the
formula

d(r, s) = r−1
∫
V (as2 + r cos θ, s+ r sin θ)dθ (37)

The formula for the reconstruction is

I(x1, x2) =
∫
e−i2k

√
(x1−as2)2+(x2−s)2

2k[2as(x2 − s)− (x1 − as2)]
∫
eiωtd(t, s)dtdωds, (38)

which was implemented as discussed above.
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