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Abstract

This article gives a short tutorial on the MUSIC algorithm and the linear
sampling method of [3], and explains how the latter is an extension of the
former.

1 MUSIC
MUSIC is an abbreviation for MUltiple SIgnal Classification [10]; we see below
why the name is appropriate.

1.1 The basics of MUSIC
MUSIC is essentially a method of characterizing the range of a self-adjoint oper-
ator. Suppose

�
is a self-adjoint operator with eigenvalues ���������	��
�
�
 , and
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corresponding eigenvectors ����������
�
�
 . Suppose the eigenvalues ��������������������
�
�

are all zero, so that the vectors ������������������
�
�
 span the null space of

�
. Alterna-

tively, ��������������������
�
�
 could merely be very small, below the noise level of the
system represented by

�
; in this case we say that the vectors ������������������
�
�
 span

the noise subspace of
�

. We can form the projection onto the noise subspace; this
projection is given explicitly by

 �!�"$#&%('*),+-�. �  -  -�/ (1)

where the superscript 0 denotes transpose, the bar denotes complex conjugate,
and  - / is the linear functional that maps a vector 1 to the inner product 23 - ��154 .

The (essential) range of
�

, meanwhile, is spanned by the vectors 6���������
�
�
7��8� .
The key idea of MUSIC is this: because

�
is self-adjoint, we know that the

noise subspace is orthogonal to the (essential) range. Therefore, a vector 1 is
in the range if and only if its projection onto the noise subspace is zero, i.e., if9  :!�"$#&%;' 1 9 )=<

. And this, in turn, happens only if
>

9  :!�"$#&%;' 1 9
)@?

(2)

Equation (2) is the MUSIC characterization of the range of
�

.
We note that for an operator that is not self-adjoint, MUSIC can be used with

the singular value decomposition instead of the eigenvalue decomposition.

1.2 The use of MUSIC in signal processing
MUSIC is generally used in signal processing problems. In this case, we make
measurements of some signal ACBEDGF at discrete times DIH )KJ

. The resulting samplesA�H ) ACBLD$HMF are considered random variables. We form the correlation matrix� H�N O )QP BEA�H A�ORF , where
P

denotes the expected value.
We consider the special case when the signal is composed of two time-harmonic

signals of different frequencies, plus noise. Thus A�H )TS �GU�VXW8Y H[Z S ��U�VXW]\ H[Z_^ H .
We assume that the random variables ^ H are identically distributed. The goal is to
estimate the frequencies of the signals.

Because the different terms of A�H are mutually independent, the self-adjoint
matrix

�
can be written [10]

� )=P B�` S ��` � Fba � a � /�Z P B�` S ��` � Fba � a � /cZed �f�g (3)
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where the
J

th component of the vector a - is given by a - H ) U VhW�i H , g denotes the
identity operator, and d �f )jP B�` ^ H�` � F . Thus we see that the the range is spanned
by a � and a � ; The orthogonal complement is the noise subspace.

The MUSIC algorithm for estimating the frequencies kl� and kC� is to plot, as
a function of k , the quotient >

9  �!b"$#&%;' a W 9 (4)

were a W is the vector whose
J

th component is U VXW H . The resulting plot, which has
large peaks at the frequencies km� and kC� , is called the MUSIC pseudospectrum.

We note that the MUSIC algorithm involves applying a test to a large number
of trial signals a W .

The appropriateness of the name MUSIC is now clear: MUSIC is a method
for estimating the individual frequencies of multiple time-harmonic signals.

1.3 The use of MUSIC in imaging
Devaney [2] has recently applied the MUSIC algorithm to the problem of estimat-
ing the locations of a number of point-like scatterers. The following is an outline
of his approach.

We consider the mathematical model in which wave propagation is governed
in free space by the Helmholtz equation

B3n � Zpo � FIq )K<
(5)

where o corresponds to the frequency of the propagating wave. We imagine that
we have r antennas or transducers, positioned at the points st����su����
�
�
���swv , that
transmit spherically spreading waves. If the x th antenna is excited by an input volt-
age U - , the field produced at the point A by the x th antenna is q #&!- BEA�F )Qy BLA:��s - FGU - .

We assume that the scatterers, positioned at the points z{���Gz|����
�
�
��bz|� , are
small, weak, and well-separated, so that they scatter according to the Born ap-
proximation. Thus if the field q #&! is incident on the } th scatterer, it produces atA the scattered field

y BEA:�bzcO~F���Olq #&! BLz�O~F , where ��O is the strength of the } th
scatterer and

y BLA:����F denotes the outgoing Green’s function. The scattered field
from the whole cloud of scatterers is � O y BEA:�bz�O~F���Olq #&! BLz�O~F . Thus the to-
tal scattered field due to the field emanating from the x th antenna is q %(�- BEA�F )� O y BEA:�bz�OlF���O y BEz�O���s - FGU - . If this field is measured at the � th antenna, the re-
sult is q %;�- B�s��(F ) � O y B3s��E�bz�OlF���O y BEz�Ou��s - FGU - . This expression gives rise to
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the multi-static response matrix � , whose B��$�$x�F th element is

�c��N - )=+
O
y B3su���GzcOlF$�7O y BLz�O���s - F (6)

The multi-static response matrix maps the vector of input amplitudes B3U�����U�����
�
�
7��U�vmF /
to the vector of measured amplitudes on the r antennas. This matrix can be writ-
ten � )K+

O ��Om�]O*� /O (7)

where we have used the notation

�]O ) B y B�s����bz�OlF�� y B3su���bz�OlF���
�
�
�� y B3swv��bz�O~F / 
 (8)

For simplicity we consider only the case r �j� , i.e., more antennas than scat-
terers.

Because the Green’s function is symmetric, � is symmetric, but it is not self-
adjoint. We form a self-adjoint matrix

� ) ����� ) ��� , where the star denotes
the adjoint and the bar denotes the complex conjugate (which is the same as the
adjoint, since � is symmetric). We note that � is the frequency-domain version of
a time-reversed multi-static response matrix; thus ��� corresponds to performing
a scattering experiment, time-reversing the received signals, and using them as
input for a second scattering experiment [8], [5], [1].

The matrix
�

can be written
� ) +

O ��O ��O �]O / + � ��������� /� (9)

from which we see immediately that the eigenvectors of
�

are the �MO . This means
that the range of

�
is spanned by the � vectors ��O .

Devaney’s insight is that the MUSIC algorithm can now be used as follows to
determine the location of the scatterers. Given any point � , form the vector ��� )B y B�s�������F�� y B3s����3��F���
�
�
�� y B3s�v�����FbF / . The point � coincides with the location of
a scatterer if and only if  :!�"$#&%;' � � )=< 
 (10)

Thus we can form an image of the scatterers by plotting, at each point � , the
quantity

>�� 9  �!�"$#&%;' � � 9 . The resulting plot will have large peaks at the locations of
the scatterers. We note that the condition (10) depends only on the operator

 �!�"$#&%('
and not on the particular basis � �8O�� .
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2 The linear sampling method

2.1 The basics of the linear sampling method
Kirsch [3] considers the scattering problem in which incident plane waves scatter
off one or more impenetrable objects. He considers the far-field operator � , which
is an integral operator whose kernel is the far-field scattering amplitude. The
operator � satisfies a reciprocity condition but is not self-adjoint. Kirsch forms
the self-adjoint operator

� ) ����� ) ��� , and considers the eigenvalues ��������u� 
�
�
 and corresponding eigenfunctions �����]����
�
�
 .
The linear sampling method is based on the theorem [3] that the range of

� �3¡�¢
coincides with the range of the operator £ , which is defined as follows. Supposeq is equal to ¤ on the boundary of the object, satisfies (5) in the region exterior
to the object, and satisfies an outgoing radiation condition. Then £ maps the
Dirichlet data ¤ to the far-field pattern of q .

In the linear sampling method, one determines the boundary of the object by
testing points � as follows. We denote by ��� the far-field amplitude corresponding
to the Green’s function

y BEA:����F . If � is inside one of the objects, then in the region
exterior to the object,

y BLA:����F satisfies (5), so �8� is in the range of £ . But if � is
exterior to the object, then because

y BEA:����F has a singularity at � , it cannot satisfy
(5) there, so � � cannot be in the range of £ .

The range of £ , which Kirsch showed is identical to the range of
� �3¡�¢ , can be

determined from the eigenvalues and eigenfunctions of
�

. In particular, the range
of
� �3¡�¢ is given by

¥�¦8§ � �3¡�¢ ) ��1©¨ + - `�23 - ��154]` �
`ª� - ` �3¡«� ¬ ? � (11)

The algorithm of the linear sampling method is to plot, at each point � , the
quantity

>�[® � - `ª� - `h¯ �3¡«� `�2� - �b� � 4]` �b° . The plot will be identically zero whenever �
is outside all the scattering objects, and nonzero whenever � is inside one of the
scatterers.

2.2 Linear sampling for ± point scatterers
To see the connection between MUSIC and linear sampling, let us consider the
linear sampling algorithm for the same case considered in section 1.3, namely
when the scattering object is composed of � weakly scattering point-like scatter-
ers. Then, from the arguments of section 1.3, we find that the operator

�
has a
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finite-dimensional range, so that the eigenvalues �²������������������
�
�
 are all zero. In
that case, the condition (11) for �8� to be in the range of £ becomes

23 - �G� � 4 )K< � x ) � Z > ��� Zp³ ��
�
�
 (12)

which can also be written
 C!�"$#&%;' �]� )´<

. This is precisely the MUSIC condition
(10). Plotting

>�� 9  C!b"$#&%;' � � 9 will give an image with very large values at the loca-
tions of the scatterers.

3 Discussion and open questions
It appears that the linear sampling method is an extension of the MUSIC imaging
algorithm of [2] to the case of extended objects and infinite-dimensional scattering
operators.

Many questions arise in connection with these algorithms. First, the MU-
SIC algorithm uses only the null space of the operator � . But we know that
the eigenvectors of � contain information about the scatterers. In particular, the
eigenvector corresponding to the largest eigenvalue corresponds to a wave focus-
ing on the strongest scatterer, and the eigenvalue contains information about the
strength of the scatterer [8], [1]. How can MUSIC be modified to make use of this
information?

The linear sampling method, on the other hand, uses all the eigenvalues and
eigenfunctions but produces only the location of the boundary of the scattering
object. Yet we know that the eigenvalues and eigenfunctions contain all the infor-
mation about the scatterer [9], [4]. How can the eigenvalues and eigenfunctions
be used to recover more information?
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