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Abstract—Passive localization of acoustic or radio-frequency
sources is often performed using time difference of arrival
(TDOA) measurements and/or frequency difference of arrival
(FDOA) measurements. TDOA localization has been thoroughly
studied, but FDOA less so. This is largely because the TDOA level
surfaces are hyperboloids, which are well-understood, whereas
the FDOA level curves and surfaces are much more complicated.
This paper addresses the case of known sensor positions and
velocities and a stationary source. The paper shows examples of
the FDOA level curves and surfaces, and shows that they simplify
dramatically in the far field, i.e., when the source is much farther
from the origin than are the sensors. The far-field behavior is of
two types, depending on whether the sensor velocities are equal
or unequal. The far-field behavior gives insight into conditions
needed for far-field TDOA-FDOA localization and FDOA-only
localization. The paper includes a characterization of feasible
far-field TDOA and unequal-velocity FDOA data.

Index Terms—source localization, TDOA, FDOA, Doppler,
DOA, far-field

I. INTRODUCTION

The problem of locating a source of acoustic or radio-
frequency energy is a problem that arises in many applications.
There are four main classes of approaches:

1) Triangulation. Use multiple spatially separated receiver
arrays, determine the direction of arrival (DOA) from
each, and triangulate to locate the source;

2) Two-step methods. From spatially separated, clock-
synchronized receivers, compute the time difference of
arrival (TDOA) and/or frequency difference of arrival
(FDOA) between those receivers, and solve polynomial
equations to locate the source (e.g., [1], [2], [3], [4],
[5]);

3) Direct position determination. From spatially separated,
clock-synchronized receivers, first estimate the transmit-
ted waveform and then plot or maximize the likelihood
function as a function of source position (e.g., [6], [7],
[8];

4) Synthetic-aperture source localization. From clock-
synchronized receivers with different trajectories, use a
synthetic-aperture approach to form an image of source
locations [7], [9], [10].

The triangulation approach 1) has the advantage of not requir-
ing temporal coherence between spatially separated receivers,
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but it is known to provide only coarse spatial resolution.
The other three approaches all use cross-correlations or cross-
ambiguity functions in somewhat different ways, and are thus
implicitly making use of TDOA and/or FDOA information.
This means that an analysis of the geometrical constraints
imposed by TDOA and FDOA data can contribute to our
understanding of the performance of methods 2)-4).

The geometry associated with TDOA measurements is
well-understood (e.g., [4], [5], [11], [12], [13], [14], [15]).
Geometrically, each TDOA measurement restricts the possible
transmitter locations to a hyperboloid. Thus, if several TDOA
measurements are obtained, locating the emitter effectively
requires finding the intersection of several hyperboloids.

When the distance between the receivers and the transmitter
is much greater than the distance between the receivers,
wavefront curvature is negligible in the region of the receivers.
This assumption is commonly referred to as the far-field
assumption [16]. It is well-known that the TDOA equations
become linear in the far field [14] and this dramatically
simplifies TDOA analysis in the far field.

The geometry associated with FDOA measurements is much
less well-understood. Analysis of the FDOA contributions
to source localization has mainly been through the study
of Cramèr-Rao bounds (e.g., [3], [17]) but the results have
not been interpreted in terms of geometry. Although a few
incidental plots of some FDOA level curves have appeared
in the literature (e.g., [9], [18], [19], [20]), no systematic
study of the FDOA geometry has been published. This is
because the FDOA level surfaces or iso-surfaces (i.e., the set
of points in space that give rise to a certain FDOA) are much
more complicated than the TDOA hyperboloids. The FDOA
equations can be converted to a polynomial system [5], but
this system has degree 8, and consequently its study is quite
difficult.

In this paper we show examples of some of the FDOA
level curves and surfaces. We make some basic observations
about the FDOA equations, in particular showing that in the far
field, the FDOA geometry simplifies dramatically. Although
this simple observation requires little mathematical machinery,
it does not seem have been noted in the literature, and it has
some interesting consequences that are discussed in this paper.

We give explicit closed-form expressions for the far-field
FDOA surfaces and find that there are two types of behavior,
depending on the relationship between the sensor velocities.
For the simpler unequal-velocity case, we show that:
1) far-field FDOA measurements provide DOA information
only;
2) the far-field DOA information obtained from FDOA is the
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same as that obtained from TDOA;
3) with the additional constraint that the source lies on a known
surface not containing the sensors (“altitude constraint”), there
can be a quasi-near-field region in which FDOA and TDOA
information is independent.
In particular, conclusion 2) may explain the poor far-field
performance of some TDOA-FDOA localization results (e.g.
[21]).

In addition, we
4) give a characterization of the possible far-field TDOA and
FDOA measurements from multiple sensors; and
5) observe that the explicit pseudo-inverse formula for the
DOA from far-field data incorporates automatic de-noising
in the sense that the formula involves a projection onto the
feasible measurement space.

These geometrical observations 1)-3) and associated conclu-
sions 4)-5) are all simple but do not seem to appear anywhere
in the literature.

The paper is organized as follows. In section II we define the
TDOA and FDOA and show examples of their level curves and
surfaces. In section III we note basic properties of the FDOA,
including its sensitivity to source position and its two far-
field simplifications. In section IV we study far-field TDOA-
FDOA localization, and discover that without constraints,
the DOA information obtained from TDOA and FDOA are
the same, but that with an “altitude constraint”, there is an
interesting quasi-near-field region in which TDOA and FDOA
information can be combined to provide range information. In
section V we characterize the feasible TDOA and FDOA far-
field measurements. In section VI we summarize the findings.
Finally, two appendices show the details of some of the results
used in the text.

II. TDOA AND FDOA MEASUREMENTS

In this section, we establish the definitions and notation for
TDOA and FDOA, and show examples of some FDOA level
curves and surfaces.

An acoustic or electromagnetic wave propagating from a
source at y ∈ R3 to a receiver at x ∈ R3, in a homogeneous
medium with wave speed c, undergoes a time delay Rx,y/c,
where Rx,y = ‖x−y‖. Here ‖·‖ denotes the usual Euclidean
distance. We denote by τ the time delay multiplied by c, so
that τ(x,y) = Rx,y . When there is relative motion between
the transmitter at y and the receiver at x, the frequency of the
arriving signal is ν0(1 − R̂x,y · v/c), where v is the relative
velocity, where ν0 is the transmitting frequency, and where
R̂x,y = Rx,y/Rx,y with Rx,y = x− y. Below we also use
the simplified notation Ry,i

.
= Ry,xi

.
Because we do not know the transmit time or frequency,

measurement of the arrival time and/or measured frequency
of a signal does not help us locate the source from a single
sensor. However, the difference of these quantities, measured
at pairs of receivers, provides information that can be used to
locate the source.

In practice, the time delay, known as the Time Difference of
Arrival (TDOA), and the difference of Doppler factors, known
as the Frequency Difference of Arrival (FDOA) or differential

Doppler, can be obtained from a cross-ambiguity function or
coherence function of signals measured at two receivers. The
TDOA and FDOA also appear as the focusing conditions in a
synthetic-aperture approach [10].

In the following, we assume that processing has been done
in such a way (perhaps by taking quotients of measured
frequencies) so that the transmit frequency has cancelled out,
and the FDOA involves no unknown transmit frequency.

In this paper, we consider a single stationary transmitter
located at y, and n receivers located at x1, ...,xn with
velocities v1, ...,vn. We write τi = τ(y,xi) etc. When all
the velocities are the same, the theory also applies to the case
of fixed receivers and a moving source with known velocity.

A. Time Difference of Arrival (TDOA)
The time difference of arrival from a signal transmitted at

y to sensors at xi and xj is

τi,j
.
= τi − τj = ‖y − xi‖ − ‖y − xj‖. (1)

In free space, the iso-TDOA surfaces, i.e. the set of y for
which τi,j is constant, are hyperboloids. If xi,xj , and y are
all on the same plane, these level curves are hyperbolas [22].
Examples are shown in Fig. 1 for x1 = (1, 0),x2 = (−1, 0).
It is well-known that far from the origin, hyperbolas are

Fig. 1. Iso-TDOA curves for sensor positions x1 = (1, 0),x2 = (−1, 0).
Iso-TDOA surfaces are obtained by revolving this figure about the horizontal
axis.

asymptotic to straight lines through the origin. These lines
give the DOA of the source at y. In three dimensions, the far-
field iso-TDOA surfaces are asymptotic to cones whose axis
is the sensor axis.

To determine equations for these asymptotic lines and cones,
we use the far-field approximation, which applies when all the
receivers are much closer to the origin than is the emitter, i.e.,
‖xi‖ � ‖y‖ for all i. Using this assumption to expand the
square root leads to (see, e.g., [16])

Ry,i
.
= ‖y − xi‖ = ‖y‖ − ŷT · xi +O

(
‖xi‖
‖y‖

)
(2)

where the T denotes transpose and the hat denotes unit vector.
The use of (2) in (1) leads to the equation for the TDOA far-
field approximation:

τi,j ≈ −ŷT · (xi − xj). (3)
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The set of points y for which (3) is constant is a cone whose
axis is xi − xj and whose vertex is at the origin.

B. Frequency Difference of Arrival (FDOA)

The Doppler factor for the signal between the emitter at y
and the ith receiver is proportional to

di
.
= vTi · R̂y,i, (4)

where again T denotes transpose and the hat denotes unit
vector.

The FDOA is defined here as

fi,j
.
= di − dj = vTi · R̂y,i − vTj · R̂y,j . (5)

One simple special case is when one of the velocities is
zero; this FDOA iso-surface is simply a cone whose axis is
the nonzero velocity. When both velocities are nonzero, the
surfaces of constant fi,j are much more difficult to describe.
Examples of planar FDOA iso-curves, for a variety of different
unequal velocity choices, are shown in Fig. 2. Examples of
FDOA iso-surfaces are shown in Fig. 3. The middle plot of
Fig. 3 shows singularities (the tips of the “horns”) at the sensor
positions.

The complexity of the near-field FDOA curves and surfaces
suggests that linearization approaches such as those of [23]
are likely to be useful only when there is very good prior
information about the source location. The reader is invited to
consider the consequences of the FDOA geometry for a) any
source localization method involving the intersection of one
of the TDOA curves of Fig. 1 with one of the FDOA curves
in Fig. 2, or b) an FDOA-only source localization method
that would involve intersections of one curve of Fig. 2 with a
second such curve that has been rotated and translated so that
it corresponds to different sensor locations.

III. PROPERTIES OF THE FDOA

In this section, we establish the sensitivity of the FDOA to
source position (section III-A) and simplified far-field formulas
for the FDOA (section III-B).

The FDOA has received much less study than has the
TDOA. Some basic properties of the FDOA are the following.

A. Sensitivity of FDOA to source position

The derivative of FDOA with respect to source position is

∇yfi,j =
I − R̂y,iR̂

T
y,i

‖Ry,i‖
· vi −

I − R̂y,jR̂
T
y,j

‖Ry,j‖
· vj (6)

(see Appendix A.) This shows that when the source at y
recedes from both sensors, changes in the position y cause
smaller and smaller changes in the FDOA. In other words,
determining source position from the FDOA becomes increas-
ingly ill-posed at larger distances.

Fig. 2. Examples of near-field FDOA iso-curves (4) for sensors located at
(1, 0) and (−1, 0), for a variety of sensor velocity choices. The bottom plot
shows the case in which both sensors have the same velocity along the y-axis.
In the top two plots, the curves were chosen to pass through the small red
circles; the bottom plot shows curves for equally spaced values of the FDOA.
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Fig. 3. Examples of near-field FDOA iso-surfaces (4) for sensors located at
(1, 0) and (−1, 0), for a variety of sensor velocity choices. These surfaces
were chosen to pass through the (near-field) point (1, 1, 1). The top two plots
involve unequal velocities, whereas the bottom plot shows the case with extra
symmetry, in which both sensors have the same velocity along the y-axis.

B. Far-field FDOA formulas

Following [24], we consider the far-field FDOA case, where
all the receivers are much closer to the origin than is the
emitter, i.e., where ‖xi‖ � ‖y‖. We use just the first term
of (2) in the denominator of R̂ to obtain

R̂y,i =
Ry,i

Ry,i
=

xi − y
‖xi − y‖

≈ xi

‖y‖
− y

‖y‖
≈ −ŷ, (7)

where −ŷ = −y/‖y‖.
Consequently, the far-field expression for the FDOA is

fi,j ≈ (vi − vj)T · ŷ. (8)

When vi 6= vj , the set of points y for which (8) is constant
is a cone whose axis is vi − vj and whose vertex is at the
origin. The top plot of Fig. 5 shows a typical example. If
the sensors, velocities, and source are all co-planar, then the
FDOA iso-curve consists of two lines through the origin, one
of which gives the DOA. The top plot of Fig. 4 shows a typical
two-dimensional example of this linear behavior of the FDOA
iso-curves in the far field.

The case of identical velocities is important because it
corresponds to the case of fixed sensors and a moving source.
In the equal-velocity case, the leading-order term (8) vanishes,
and (5) can be written as

fi,j = v
T ·
(
R̂y,i − R̂y,j

)
. (9)

In this case, we approximate the difference in unit vectors by
the derivative (see Appendix A) evaluated at the midpoint xij

between xi and xj . We thus obtain the far-field expression

fi,j = v
T ·

I − R̂yR̂
T
y

‖Ry‖
· (xi − xj), (10)

where Ry = y − xij . When the sensors are symmetric with
respect to the origin, the midpoint xij is the origin, and Ry

is simply y.
To plot iso-surfaces of (10), we can rewrite (10) as

‖Ry‖ =
vT ·

(
I − R̂yR̂

T
y

)
· (xi − xj)

fi,j
, (11)

which, with fi,j fixed, is a polar- or spherical-coordinate
formula1 giving the range r = ‖Ry‖ in terms of the direction
R̂y . We note that the expression I − R̂yR̂

T
y in the numerator

of (10) is a projection operator that projects a vector onto the
plane perpendicular to the vector R̂y . Thus the surface (11)
passes through the origin when y is either in the direction of
the sensor axis (xi − xj) or in the direction of the velocity
axis v.

The middle plot of Fig. 4 shows some FDOA curves for
the equal-velocity case; the bottom plot of Fig. 4 shows the
corresponding plot produced from (11). The bottom plot of
Fig. 5 shows a typical example of an equal-velocity far-field
iso-suface.

1Note that not all combinations of v, xi−xj , and fi,j result in a positive
radius. This is connected to the question of which measurements fi,j are
feasible.
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Fig. 4. The first figure shows a typical example of FDOA iso-curves for
unequal velocities, with complicated curves in the near field that become
lines in the far field. The second plot shows a variety of FDOA iso-curves,
chosen to pass through the small red circles, for the case when both sensors
have velocity (1, 3). The bottom plot shows a plot produced from (11) for
the same velocities as in the second plot. In all cases, the sensors are at (1, 0)
and (−1, 0).

Fig. 5. The first figure shows a typical example of a far-field FDOA iso-
surface for unequal velocities. The second plot shows a typical far-field equal-
velocity case. Again the sensors are at (1, 0) and (−1, 0), and these surfaces
pass through the (far-field) point (1, 10, 0). The first plot shows the far-field
case for parameters of the second plot of Fig. 3.

IV. FAR-FIELD TDOA-FDOA LOCALIZATION

In this section, we analyze the geometry involved in TDOA-
FDOA localization. We consider three cases: A) the purely
two-dimensional case, B) the purely three-dimensional case,
and C) the three-dimensional case in which the source is
known to lie on a flat surface not containing the sensors.

From two sensors, one might hope to localize a single
target on a known plane from simultaneous TDOA and FDOA
measurements. It has been noted in the literature (e.g., [25])
that this often works much better in the near field than in the
far field, but this phenomenon does not seem to have been
explained geometrically.

A. Two dimensions

For the case of different sensor velocities and a far-field
source, the TDOA and FDOA information is not independent.
This is because both the TDOA and FDOA curves are asymp-
totic to lines through the origin. Since these asymptotic lines
pass through both the origin and the source, the TDOA and
FDOA asymptotic lines coincide, and both provide only DOA
information. A typical example is shown in the top plot of Fig.
6, where we see complicated behavior of the orange FDOA
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curve near the origin, but linear behavior already for a source
located at (10, 10). The blue curve is the TDOA hyperbola.

The equal-velocity TDOA-FDOA case, however, is better;
an example is shown in the middle plot in Fig. 6. The equal-
velocity case allows far-field transverse intersections, provided
the source is not close to the sensor axis or the velocity
axis. FDOAs for sources in the degenerate directions (along
the sensor axis or velocity axis) are again defined by the
corresponding radial line, which is again tangent to the far-
field TDOA curve. The bottom plot in Fig. 6 shows an example
of the degenerate equal-velocity case with a source along the
velocity axis.

B. Three dimensions

In the unequal-velocity three-dimensional case, the
constant-TDOA far-field surface is a cone (3) with axis
xi − xj , and the constant-FDOA far-field surface is a cone
(8) with axis vi − vj . (See the top plot in Fig. 5.) These
cones both have their vertices at the origin, and consequently
both cones contain the line joining the origin to the source.
Thus for a purely three-dimensional far-field problem, the
TDOA and FDOA both provide information only about the
DOA of the source and not its range.

Again, the equal-velocity case is better: a typical example
of an equal-velocity FDOA surface is shown in the bottom
plot of Fig. 5. The intersection of such a surface with a
constant-TDOA cone is generally a closed curve in space.
More information (such as a TDOA or FDOA from another
sensor pair) is needed to determine the specific source location
on this curve.

C. Three dimensions with known altitude

The situation changes somewhat when the source is known
to lie on a surface, say a flat horizontal plane y3 = h that
does not contain the sensors, which are assumed to lie near
the origin. If the sensor axis and velocity axis are roughly
horizontal, then the far-field TDOA and (unequal-velocity)
FDOA cones both intersect the flat plane in hyperbolas (shown
as dotted curves in Fig. 7). If the projection of the sensor
midpoint is chosen to be the origin, then the hyperbolas
are centered at (0, 0, h), and in general their foci are at a
distance of approximately |h| from (0, 0, h). (See Appendix
B.) Thus, for an altitude significantly greater than the inter-
sensor distance, the known-altitude configuration effectively
produces a quasi-near-field region on the plane that extends
to a distance comparable to the sensor height. In this quasi-
near-field region, the FDOA iso-curves are simply hyperbolas,
which are much simpler than the near-field FDOA iso-curves
of a purely two-dimensional configuration. In this quasi-
near-field region, the FDOA hyperbolas and TDOA hyperbo-
las intersect transversally, provided the respective cone axes
(namely v1 − v2 and x1 − x2) are different.

The asymptotes of the hyperbolas on the plane are lines
joining (0, 0, h) to the source, and consequently, for sources
located at distances much greater than |h| from (0, 0, h), the
TDOA and (unequal-velocity) FDOA hyperbolas are again
approximately tangent.

Fig. 6. Intersection of TDOA and FDOA curves for a source located at the
small red circle. The red curve is the FDOA curve, and the blue curve is the
TDOA hyperbola. The first plot shows a typical case of unequal velocities; the
second shows an equal-velocity case in which the source is well away from
both the sensor axis and the velocity axis; the bottom plot shows an equal-
velocity degenerate case in which the source is aligned with the velocity axis.
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Fig. 7. TDOA and FDOA far-field cones with different cone axes, for a
source known to lie somewhere on the horizontal plane. The intersection of
the TDOA and FDOA hyperbolas (given by dashed lines) occurs at the source
location, shown as a blue star.

Again the equal-velocity FDOA case is better, allowing
transverse intersections of TDOA and FDOA surfaces at great
distances from the sensors.

V. FEASIBLE FAR-FIELD MEASUREMENTS

In this section we address the question of which sets of
TDOA and FDOA measurements can arise from a source in
the far field.

Characterization of feasible far-field measurements may be
useful for determining whether a source is, in fact, located
far from the sensors. In addition, an understanding of the
feasible far-field TDOA and FDOA measurements is poten-
tially useful for noise suppression. In particular, one method
for de-noising in TDOA-based geolocation is to project the
noisy measurements onto the feasible set [12], [5], [24], [26].
This ensures that the TDOA measurements are physically
realizable and consistent between receivers by enforcing a
“closed loop” condition. We note below that in the far-field
case, a similar approach applies to the unequal-velocity FDOA
measurements.

The far-field TDOA approximation (3) can be assembled
into the matrix form

τ = −PXŷ, (12)

where each row of the matrix X is a receiver location, and P
is a differencing matrix. For example, with 3 sensors, we can
write the equations for the TDOA measurements (τ1,2, τ1,3)
as

τ =

(
τ1,2
τ1,3

)
=

(
−1 1 0
−1 0 1

)
︸ ︷︷ ︸

−P

xT
1

xT
2

xT
3

y1/‖y‖y2/‖y‖
y3/‖y‖

 = −PXŷ.

Similarly, the FDOA equations (8) can be put into matrix
form

f = −PV ŷ, (13)

where again P is a differencing matrix as above and V =
(vT1 ,v

T
2 , . . . ,v

T
n )

T .

We see from (12) and (13) that the far-field TDOA (respec-
tively FDOA measurements) must lie in the image of the unit
circle under transformation by −PX (respectively −PV ).
This image is an ellipse with rotation and scaling that can
be determined from the singular value decomposition of PX
(respectively PV ). See Figure 8 for an example of such an
ellipse for the FDOA case.

The least-squares estimate of the DOA ŷ can be calculated
using the pseudoinverse for the associated systems (12) and
(13):

ŷ = −
[
(PX)TPX

]−1
(PX)T τ (TDOA only)

ŷ = −[
(
PV )TPV

]−1
(PV )Tf . (FDOA only) (14)

The condition that the matrix PV be nonsingular, which
is needed for the second line of (14), corresponds to the
requirement that the relative velocities of the receivers be
nonzero (i.e., the unequal velocity case). One benefit of this
method for DOA calculation is that de-noising is automatically
performed; this is because projection onto the range of −PX
(respectively −PV ) is equivalent to projection onto the range
of P . Numerical tests for the FDOA DOA estimation approach
and a comparison with the associated Cramér-Rao bound were
carried out in [5], [24].

Clearly far-field TDOA and (unequal-velocity, far-field)
FDOA measurements may be combined arbitrarily.

Fig. 8. Plot of far-field f1,2 vs. f1,3 for a system of three receivers centered
around the origin. The image is an ellipse with scaling in the direction of the
left singular vectors of Ṽ .

VI. CONCLUSION

The FDOA curves and surfaces are very complicated in
the near field, but in the far field, we showed that they
simplify dramatically to easily-understood curves and surfaces.
In general, the equal-velocity FDOA surfaces are closed sur-
faces similar to a torus. The unequal-velocity FDOA surfaces
become cones in the far field. In this latter case, having
prior knowledge of the source altitude gives rise to FDOA
hyperbolas on the constant-altitude plane, which extends a
desirable quasi-near-field regime to a distance comparable to
the sensor height.

We showed that in the case of unequal sensor velocities,
the TDOA and FDOA curves and surfaces become tangent
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in the far field. Consequently, attempts to find the range of
a distant source from single-look multiple-FDOA or TDOA-
FDOA measurements, using sensors with different velocities,
are unlikely to succeed without aditional information.

The TDOA-FDOA situation is better in the known-altitude
case, where the quasi-near-field region on the known-altitude
plane extends laterally roughly to the same distance as the
source altitude. In this region, TDOA and FDOA curves can
intersect transversally.

In the far field, we gave a characterization of feasible
TDOA and unequal-velocity FDOA measurements; this char-
acterization depends only on the (assumed known) sensor
positions and velocities. Far-field TDOA and unequal-velocity
far-field FDOA measurements can be used to determine the
source DOA by a simple pseudo-inverse linear formula, which
automatically projects the measurements onto the feasible
manifold. This method for obtaining DOA from far-field
FDOA measurements was studied more thoroughly in the
dissertation [5] and preprint [24].

We leave for the future the questions regarding 1) how to
use far-field equal-velocity FDOA measurements to determine
the source location and velocity and 2) how to understand and
use the near-field FDOA measurements.

APPENDIX A
DERIVATIVE OF A UNIT VECTOR

∂

∂zi
ẑT · v =

∂

∂zi

zT · v√∑
j z

2
j

=
vi√∑
j z

2
j

− zi(z
T · v)(√∑
j z

2
j

)3/2
=
vi − (zi/‖z‖)(ẑT · v)

‖z‖
.

(15)

Consequently

∇z(ẑ
T · v) = I − ẑẑT

‖z‖
· v. (16)

APPENDIX B
KNOWN ALTITUDE HYPERBOLAS

The TDOA and FDOA far-field cones are of the form

ŷ · a = d, (17)

where the cone axis a is either the difference between the
sensor locations or the difference between the velocities. For
simplicity, we choose coordinates so that the cone axis is
a = (a, 0, 0). For a source positioned at the point y = z, we
have d = ẑ · a = az1/‖z‖. The intersection of (17) with the
horizontal plane at y3 = h is easily found to be the hyperbola

a2 − d2

d2h2
y21 −

y22
h2

= 1, (18)

which, since the y21/h
2 coefficient is

a2 − d2

d2
=
a2

d2
− 1 =

‖z‖2

z21
− 1 =

‖z‖2 − z21
z21

, (19)

can be written (
‖z‖2 − z21

)
z21

y21
h2
− y22
h2

= 1. (20)

The y1-intercepts of the hyperbola are

y1 =
±hz1√
‖z‖2 − z21

=
±hz1√
z22 + z23

. (21)

Its foci are located at (±c, 0, h), where

c = h

√
z21

‖z‖2 − z21
+ 1 =

h‖z‖√
‖z‖2 − z21

=
h‖z‖√
z22 + z23

. (22)

The coefficient of h in (22) depends on the source direction
but in general is greater than 1.
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