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Abstract. We consider the problem of obtaining information about an inaccessible half-space
from acoustic measurements made in the accessible half-space. If the measurements are of limited
precision, some scatterers will be undetectable because their scattered fields are below the precision
of the measuring instrument. How can we make measurements that are optimal for detecting the
presence of an object? In other words, what incident fields should we apply that will result in the
biggest measurements?

There are many ways to formulate this question, depending on the measuring instruments. In
this paper we consider a formulation involving wave-splitting in the accessible half-space: What
downgoing wave will result in an upgoing wave of greatest energy?

A closely related question arises in the case when we have a guess about the configuration of
the inaccessible half-space. What measurements should we make to determine whether our guess
is accurate? In this case we compare the scattered field to the field computed from the guessed
configuration. Again we look for the incident field that results in the greatest energy difference.

We show that the optimal incident field can be found by an iterative process involving time
reversal “mirrors.” For band-limited incident fields and compactly supported scatterers, in the
generic case this iterative process converges to a single time-harmonic field. In particular, the process
automatically “tunes” to the best frequency. This analysis provides a theoretical foundation for the
frequency-shifting and pulse-broadening observed in certain computations [E. Cherkaeva and A. C.
Tripp, SEG97 Expanded Abstracts, 67th Annual Meeting of Society of Exploration Geophysicists,
SEG Publications, Tulsa, OK, 1997, pp. 438–441] and time-reversal experiments [C. Prada and M.
Fink, Wave Motion, 20 (1994), pp. 151–163], [C. Prada, J.-L. Thomas, and M. Fink, J. Acoust. Soc.
Amer., 97 (1995), pp. 62–71].
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1. Introduction. This paper is motivated by the question, What is the best
way to do acoustic imaging? If we want to make the best possible images, we must
begin with data that contain the most possible information. In particular, since all
practical measurements are of limited precision, some scatterers may be undetectable
because their scattered fields are below the precision of the measuring instrument:
our data will contain no information about them. What incident fields are “best,” in
the sense that their scattered fields give the biggest measurements?

This paper considers only the problem of detecting the presence of an object
(or distinguishing it from a guess) and not the problem of making an image of that
object. For imaging, there are other criteria for “best” that one could imagine using.
A Bayesian criterion [10], [11], for example, would be to look for the measurement
producing the “narrowest” posterior distribution for the scatterer when an a priori
distribution for the scatterer is given.

The detection or distinguishability problem has been studied for fixed-frequency
problems in electrical impedance tomography [6] and acoustic scattering [12]. The
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connection between optimal measurements and iterative time-reversal experiments
was pointed out in [12], [14], and [15]; in all these papers, the analysis was carried
out at a single fixed frequency. The issue of optimal time-dependent waveforms in a
special (1 + 1)-dimensional case was studied in [3], where a time-harmonic waveform
was found to be optimal.

In this paper we study the question of optimal time-dependent waveforms in the
(3 + 1)-dimensional case. In particular, we consider the half-space geometry: we
imagine that a plane divides space into accessible and inaccessible regions, and we
assume that we can make measurements everywhere on the plane.

Section 2 contains a careful formulation of the idealized problem: the wave equa-
tion, the measurements, the notion of “biggest.” Section 3 is devoted to the example
of a one-dimensional medium, in which the problem can be solved explicitly. Section
4 gives an iterative experimental method that can be used to find the optimal field
even if the scatterer is unknown. This method is precisely the iterative time-reversal
procedure of [14] and [15]. Section 5 discusses implications and open questions. The
paper concludes with three appendices containing the technical details needed for the
proof of convergence of the time-reversal iterates. We show that in general the iterates
converge to a time-harmonic field that is “tuned” to the best frequency.

2. Basic concepts.

2.1. Distinguishability. For any two operators A1 and A2, we say that A1

is distinguishable from A2 with measurement precision ε if the distinguishability
δ(A1, A2), defined as

δ(A1, A2) = sup
f

||A1f −A2f ||
||f || ,(1)

is greater than ε. A field that is best for distinguishing A1 from A2 is an f for which
the maximum is attained. We will determine below the norms that are appropriate
to use.

2.2. Acoustic wave equation. We consider the constant-density acoustic wave
equation

(∇2 − c−2(x)∂2
t )U(t, x) = 0(2)

in the case in which c = c0 everywhere in the upper half-space x3 > 0. This model
includes neither dispersion nor dissipation.

We can formulate the scattering problem in a variety of ways [2]. In particular,
we can use either a boundary map, sources, or a scattering operator defined in terms
of wave splitting.

2.3. The boundary map. To define the boundary map, we specify that U = f
on the surface x3 = 0. This condition, together with an outgoing radiation condition
at infinity [2], uniquely determines a solution U in the lower half-space. We can then
take the normal derivative ∂U/∂x3; this normal derivative, restricted to the surface
x3 = 0, we denote by g. The mapping from f to g is the boundary map Λ. Thus,
on the surface x3 = 0, ΛU = ∂U/∂x3. Note that Λ is an operator-valued function of
time.

Acoustic distinguishability can be defined in terms of the boundary map as

δB(c, c0) = sup
f

‖(Λ− Λ0)f‖
‖f‖(3)
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for appropriate norms. Here Λ0 denotes the boundary map for the reference sound
speed c0(x). This formulation, in terms of the boundary map, is not pursued in this
paper.

2.4. Sources. To formulate scattering in terms of sources, we consider the wave
equation with a source:

(∇2 − c−2(x)∂2
t )UJ(t, x) = J(t, x).(4)

Scattering data is then UJ(t, x) for x on the plane, where J is supported on or above
the plane. Acoustic distinguishability in terms of sources would be

δS(c, c0) = sup
J

‖UJ − U0
J‖

‖J‖ ,(5)

where U0
J denotes the field due to the reference sound speed c0(x) and source J . This

formulation is not pursued in this paper; instead we consider the scattering operator.

2.5. The scattering operator. We define the scattering operator in terms of
upgoing and downgoing waves. The motivation for this point of view is the existence
of network analyzers, which can decompose a time-harmonic signal in a waveguide
into an upgoing one and a downgoing one, and measure the amplitude and phase of
the upgoing wave. Stepped-frequency radar, for example, is based on the ability of
such instruments to transmit and receive signals at the same time.

2.5.1. Upgoing and downgoing waves. To define upgoing and downgoing
waves, we make use of two Fourier transforms, a temporal one and a spatial one.
First we inverse-Fourier transform the solution U of (2) in t:

u(ω, x) = F−1U = (2π)−1

∫
U(t, x)eiωtdt.(6)

This frequency-domain solution u satisfies the reduced wave equation

(∇2 + ω2c−2)u(ω, x) = 0.(7)

We write k = ω/c0 and with a small abuse of notation we write u(k, x) instead of
u(c0k, x). We then Fourier transform u again in x′ = (x1, x2), so that

û(k, η′, x3) = Fx3u =

∫
u(k, x)e−ikη′·x′

d2x′,(8)

where η′ = (η1, η2). (We note that Fx3 depends also on k.) Then U is recovered as

U(t, x) =
1

(2π)2

∫ ∫
û(k, η′, x3)e

ikη′·x′
e−ikc0tk2d2η′c0dk.(9)

In the upper half-space, û satisfies the ordinary differential equation

(∂2
x3

+ k2 − k2|η′|2)û = 0,(10)

which has the general solution

û(k, η′, x3) = A(k, η′)eikη3x3 + B(k, η′)e−ikη3x3 ,(11)
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where

η3(k) =

{√
1 − |η′|2 for 1 > |η′|,

i(sgnk)
√
|η′|2 − 1 for 1 < |η′|.

(12)

We define the vectors η± = (η′,±η3), which satisfy η± · η± = 1.
In order for U , as defined by (9), to be real-valued, the Fourier transform û must

satisfy certain symmetry conditions. In particular, we must have A(−k, η′) = A(k, η′),
B(−k, η′) = B(k, η′), and η3(−k) = η3(k).

Equation (11) shows us how to split the time-domain solution of (2) into two
parts, which we call the upgoing and downgoing parts. Thus for x3 > 0 we write
U = U↑ + U↓, where U↓ is

U↑(t, x) =

∫ ∫
A(k, η′)eikη

+·xe−ikc0tk2d2η′c0dk,(13)

and

U↓(t, x) =

∫ ∫
B(k, η′)eikη

−·xe−ikc0tk2d2η′c0dk.(14)

We see that (14) and (13) are plane wave decompositions. The components for
which |η′| < 1 are propagating plane waves, and η± is a unit vector that gives the
direction of propagation. The sign of the third component of η± determines whether
the wave is downgoing or upgoing. On the other hand, components with |η′| > 1 cor-
respond to evanescent waves. For U↓, these evanescent waves decay in the downward
(negative x3) direction; for U↑, they decay in the upward (positive) direction.

2.5.2. The scattering operator. It is natural to define a scattering operator
S' as the map from U↓ to U↑. We denote the kernel of this operator also by S':

U↑(x, t) =

∫ ∞

−∞

∫
S'(x, y, t− τ)U↓(y, τ)d3ydτ.(15)

We note that this scattering operator is defined only on downgoing solutions of the
Helmholtz equation, i.e., on functions of the form (14).

The kernel of (15) is a convolution in time because the Fourier transform “diag-
onalizes” the time derivative of (2), so that the frequency is simply a parameter in
(7). In other words, the convolution is an expression of the fact that in the frequency
domain, (15) takes the form

u↑(k, x) =

∫
S'(k, x, y)u↓(k, y)d3y.(16)

The time-domain operator S' is related to the frequency-domain scattering op-
erator S' by S' = F−1S'F .

In fact, S' and S' are determined by their actions on the plane x3 = 0. We
see this as follows. First we Fourier transform (16) in space. The operator S' is
transformed into the operator Ŝx3,x̃3 = Fx3S

'F−1
x̃3

= (Fx3F−1)S'(Fx̃3F−1)−1, where
Fx3 is defined by (8) and F−1 by (6). The transformed version of (16) is

û↑(k, η′, x3) =

∫
Ŝx3,x̃3(k, η

′, η̃′)û↓(k, η̃′, x̃3)k
2d2η̃′.(17)
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The operator Ŝx3,x̃3 is determined completely by its action at x3 = 0, which we see
from the following argument.

Into (17) we substitute û↓(k, η̃′, x̃3) = B(k, η̃′)e−ikη̃3x̃3 and û↑(k, η′, x3) =
A(k, η′)eikη3x3 ; we see that

Ŝ(k, η′, η̃′) = e−ikη3x3 Ŝx3,x̃3(k, η
′, η̃′)e−ikη̃3x̃3(18)

satisfies

A(k, η′) =

∫
Ŝ(k, η′, η̃′)B(k, η̃′)k2d2η̃′,(19)

where A and B are as in (11). The relation between the operators Ŝ and Ŝx3,x̃3

can be written Ŝx3,x̃3 = Ex3 ŜEx̃3 , where Ex3 is the operator of multiplication by
exp(ikη3x3), and thus

S' = F−1
x3

Ex3 ŜEx̃3Fx̃3 .(20)

On the plane x3 = 0, this becomes

S = F−1
0 ŜF0.(21)

This defines a scattering operator S on the plane x3 = 0. It is this operator, together
with the corresponding time-domain operator S = FSF−1, that we will use in the
rest of the paper. We note that the domain of the operator S is restricted to the space
of downgoing waves as defined by (14).

The scattering operator Ŝ and the boundary map Λ are related to each other by
formulas developed in [2]. They are thus equivalent operators. Whether it is better
to formulate a given problem in terms of a scattering operator or a boundary map
depends largely on the design of the equipment involved.

2.6. The energy identity and the energy flux. If we multiply (2) by ∂tU
and integrate the resulting equation over the volume V , we obtain

∫

V

(
(∂tU)∇2U − 1

2c2(x)
∂t(∂tU)2

)
dx = 0.(22)

We write the first term of (22) as ∇·((∂tU)∇U)−∇(∂tU)·∇U and apply the divergence
theorem to the term containing the divergence. We thus obtain

∫

∂V
(∂tU)∂νUdS = ∂t

∫

V

1

2

(
|∇U |2 +

1

c2(x)
(∂tU)2

)
dx,(23)

where ν denotes the outward unit normal to the surface ∂V .
This equation relates the change in energy in the volume V (the right side of (23))

to the energy flux across its boundary surface ∂V .
From (23) we see that the time-integrated energy flux across a surface ∂V in the

normal direction ν is

W (U) = −
∫ ∞

−∞

∫

∂V
(∂tU)∂νUdSdt.(24)

We can use Parseval’s identity to write the time-integrated energy flux in terms of
the frequency-domain wave functions:

W (u) = −(2π)3
∫ ∞

−∞

∫

∂V
(iωu)∂νu dSdω = −(2π)3

∫ ∞

−∞

∫

∂V
(ic0ku)∂νu dSc0dk,

(25)

where the overline denotes the complex conjugate.
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2.6.1. The energy flux of upgoing and downgoing waves. At the surface
x3 = 0, the total field splits into upgoing and downgoing parts. Because the flux
is quadratic, it does not necessarily split into corresponding upgoing and downgoing
fluxes. However, a quick calculation using (13), (14), and (25) shows that if upgoing
and downgoing evanescent waves are not both present on the plane x3 = 0, the time-
integrated cross terms

∫∞
−∞

∫
x3=0(∂tU

↓)∂x3U
↑dx′dt and

∫∞
−∞

∫
x3=0(∂tU

↑)∂x3U
↓dx′dt

cancel. Under these conditions, the time-integrated fluxes do split into upgoing and
downgoing fluxes, so that W (U↓ + U↑) = W (U↓) + W (U↑). Throughout this paper,
we assume that the sources of the downgoing field are far from the scatterers, so that
there is no interaction between upgoing and downgoing evanescent waves on the plane
x3 = 0. These evanescent waves are filtered out in the rigorous analysis later in the
paper.

We write the downgoing energy flux as

W (U↓) =

∫ ∞

−∞

∫

x3=0
(∂tU

↓)∂x3U
↓dx′dt = (2π)3

∫ ∞

−∞

∫
|B(k, η′)|2c20η3k

4d2η′dk,

(26)

where we have used (14) and (25) in carrying out the computation (26). In (26) there
is no minus sign because downgoing energy travels in the −x3 direction.

Although the left side of (26) is real, it is not obvious that the right side is,
because η3 can be imaginary. However, if one splits the k integral into pieces as

W (U↓) =

∫ (∫ 0

−∞
+

∫ ∞

0

)
|B(k, η′)|2c20k4η3dkd

2η′(27)

and uses the symmetry properties of B and η3, one sees that for evanescent waves,
the two terms cancel. This shows that the evanescent waves do not contribute to the
energy flux.

The flux can be used to form an inner product on the space of downgoing prop-
agating waves; we define

(U↓, V ↓)W =
1

2

∫ ∞

−∞

∫

x3=0

(
(∂tU

↓)∂x3V
↓ + (∂tV

↓)∂x3U
↓) d2x′dt

= (2π)3
∫ ∫

|η′|<1
û↓v̂↓c20k

4η3dkd
2η′.(28)

We note that the product c20k
4η3 is nonnegative, so in the transform domain, this

inner product is merely a weighted L2 inner product.
Similarly, the energy flux of the upgoing scattered field SU↓ = U↑ that passes

through the plane x3 = 0 is

W (U↑) =

∫ ∞

−∞

∫

x3=0
(∂tU

↑)∂x3U
↑dx′dt = −(2π)3

∫ ∞

−∞

∫
|A(k, η′)|2c20k4η3d

2η′dk.

(29)

The minus sign in (29) is due to the fact that the upgoing wave corresponds to energy
leaving the lower half-space. Equations (26) and (29) show that the time-integrated
downgoing flux W (U↓) is positive and the time-integrated upgoing flux W (U↑) is
negative.

Note that for propagating waves, |W |1/2 satisfies the triangle inequality: |W (U↑
1 +

U↑
2 )|1/2 ≤ |W (U↑

1 )|1/2 + |W (U↑
2 )|1/2.
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The flux inner product on the space of upgoing propagating waves is

(U↑, V ↑)W =

∣∣∣∣
−1

2

∫ ∞

−∞

∫

x3=0

(
(∂tU

↑)∂x3V
↑ + (∂tV

↑)∂x3U
↑)
∣∣∣∣ d

2x′dt

= (2π)3
∫ ∫

|η′|<1
û↑v̂↑c20k

4η3dkd
2η′;(30)

thus for propagating waves, |W (U↑)| = (U↑, U↑)W .
Conservation of energy. If the medium is initially quiescent, conservation of en-

ergy tells us that W (U↓) ≥ |W (SU↓)|; this can be seen from integrating (23) over
all time and using the fact that the energy within the volume V is initially zero and
cannot become negative. The time integral of the right side of (23) is thus positive.
The left side we write as W (U) = W (U↓) + W (SU↓). This implies that the total
upgoing flux |W (SU↓)| cannot be greater than the total downgoing flux W (U↓).

Finite-energy fields on the plane. We define the space w of finite-energy functions
on the plane to be the closure of C∞

0 (R2 × R) in the inner product

(u, v)2w =

∫ ∫
û(k, η)v̂(k, η)c20k

4|η3|d2η′dk(31)

and the space W = Fw.

2.7. Acoustic distinguishability via the scattering operator. We define
the acoustic distinguishability in terms of the upgoing and downgoing energy fluxes
through the surface x3 = 0.

For a reference scatterer with scattering operator S0, the energy flux of the up-
going scattered field S0U↓ and of the difference field (S −S0)U↓ are defined similarly.

In general the distinguishability of S from S0 is

δ(S,S0) = sup
U↓

|W ((S − S0)U↓)|
W (U↓)

= sup
u↓

|W ((S − S0)u↓)|
W (u↓)

.(32)

We recall that evanescent components do not contribute to the energy flux. To
remove the evanescent components from (32), we denote by P the orthogonal pro-
jection onto the propagating components: P = F−1

0 P̂F0, where P̂ is the operator
of multiplication by χ|η′|<1, the function that is one for |η′| < 1 and zero otherwise.
Explicitly, P is given by

P (k)f(x′) =

∫
k2

∫

|η′|<1
eikη

′·(x′−y′)d2η′f(y′)d2y′.(33)

In the time domain, P = FPF−1. With this notation, we can write W (U) =
W (PU) = W (Pu).

Moreover, the scattered field due to an evanescent incident wave has zero total
energy flux. This is because of the comments at the end of the previous section:
0 = W ((I − P )u↓) ≥ |W (S(I − P )u↓)| implies that W (S(I − P )u↓) = 0.

In addition, the upgoing energy flux can be increased only by getting rid of the
evanescent components of the incident wave. This is because of the triangle inequality
|W (SPu + S(I − P )u)|1/2 ≤ |W (SPu)|1/2 + |W (S(I − P )u)|1/2 = |W (SPu)|1/2.

This implies that the downgoing waves that give rise to the maximum total energy
flux are propagating waves. Thus we find that the distinguishability can be written

δ(S, S0) = sup
U↓

|W (P(S − S0)PU↓)|
W (PU↓)

= sup
u↓

|W (P (S − S0)Pu↓)|
W (Pu↓)

.(34)
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We note that the scattering operator S0 for free space is the zero operator. Thus,
according to (1) and (32), the presence of a scatterer can be detected with measure-
ment precision ε if the distinguishability satisfies

δ(S, 0) = sup
U↓

|W (PSPU↓)|
W (PU↓)

= sup
PU↓

|W (PU↑)|
W (PU↓)

> ε.(35)

The distinguishability can be defined equally well in terms of the operator Ŝ of
(18) or S of (21).

3. Example: The one-dimensional case. If the medium in the lower half-
space depends only on depth, then the coefficient B of (11) is the reflection coefficient
R(k, η′) multiplied by the incident coefficient A. In this case, the distinguishability
δ(S, 0) can be computed from (26), (29), and (35) as

δ(S, 0) = sup
B

∫ ∫
|R(k, η′)B(k, η′)|2c20k4η3dkd2η′∫ ∫

|B(k, η′)|2c20k4η3dkd2η′
.(36)

The maximum of the right side of (36) is attained in the limit when B is a delta
function supported at the maximum of |R|.

Thus to maximize the scattering from a one-dimensional scatterer, we compute
the conventional reflection coefficient R(k, η′) and find the values of k and η′ at which
it attains its maximum. Taking B to be a delta function supported at such a point
corresponds to taking an incident field that is a plane wave of fixed frequency ω = c0k
and incident direction given by η′.

Note that since R is −1 for |η′| = 1 (grazing), a maximum always occurs at grazing
incidence. If this is undesirable, grazing incidence can be excluded by modifying the
definition of distinguishability.

4. An adaptive method for producing the best fields. To maximize the
distinguishability when the medium is unknown, we can use the following adaptive
method.

We write

δ(S,S0) = sup
U↓

|W (P(S − S0)PU↓)|
W (PU↓)

= sup
U∈W

(U, (P(S − S0)P)∗P(S − S0)PU)W
(PU,PU)W

,

(37)
where U(x, t) = U↓|x3=0 and where the adjoint ∗ has been taken in the space W
(defined just below (31)).

We see in Appendix A that (PSP)∗ = T (PSP)T , where T denotes the time-
reversal operator TU(t, x) = U(−t, x).

Thus we see that the operator appearing on the right side of (37) is A = TP(S −
S0)PTP(S − S0)P. In general, to maximize a quotient of the form

〈U,AU〉/〈U,U〉,(38)

one considers an appropriately normalized sequence AnU . When A is compact, this
sequence converges to the eigenfunction corresponding to the largest eigenvalue of A.
Here, however, A has a continuous spectrum, so we expect the sequence AnU , when
appropriately normalized, to converge to a generalized eigenfunction of A, and the
corresponding quotient (38) to converge to the supremum of the continuous spectrum.
We note that such generalized eigenfunctions do not have finite energy.
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When A is compact, the usual way to normalize AnU is to divide by ‖AnU‖.
Here, however, because we expect AnU to converge to a distribution in the time
variable, we must use a distributional normalization. We consider test functions in a
particular space that is discussed in Appendix B. These test functions are functions
of space and time. In the time variable, they are Fourier transforms of functions of
compact support. The distribution action is chosen to coincide with the flux inner
product defined by (28) and (30). For the distribution action we use the same notation
(·, ·)W as for the flux inner product.

To normalize, we choose an arbitrary test function Ψ and consider the sequence
AnU/(AnU,Ψ)W . This gives rise to the following algorithm for carrying out the
maximization of (37).

1. Start with any V ↓
0 ; let j = 0.

2. Send V ↓
j into the lower half-space and measure the resulting upgoing field

V ↑
j (t, x) = SV ↓

j (t, x).
3. Calculate the corresponding scattering from the reference configuration

S0V
↓
j (t, x)). Calculate the difference field Ṽ ↑

j (t, x) = V ↑
j (t, x) − S0V

↓
j (t, x).

4. If j is even, let

V ↓
j+1(t, x) = Ṽ ↑

j (−t, x),(39)

add one to j, and go to step 2.
5. If j is odd, normalize

V ↓
j+1(t, x) =

Ṽ ↑
j (−t, x)

(T Ṽ ↑
j ,Ψ)W

,(40)

add one to j, and go to step 2.
Appendix B contains a proof that, in the case of a compactly supported scatterer

in free space, the sequence Un = V2n = AnU generally converges to a single time-
harmonic wave. The frequency of this wave is the frequency at which the largest
eigenvalue of S attains its maximum. If this largest eigenvalue happens to attain
the same maximum at several different frequencies, then the iterates Un converge to
a sum of time-harmonic waves with these frequencies. The relative strengths of the
different frequencies are determined by the corresponding frequency components of
the initial incident wave U0 = V ↓

0 .
The argument in Appendix B takes place within a limited frequency band; this

frequency band is determined by the bandwidth of the test function. For an un-
bounded frequency band, it is likely that high frequencies would dominate. These
high frequencies correspond to rays that enter the lower half-space, are bent by the
scatterer, and return to the upper half-space. Such rays are typically nearly horizon-
tal and enter the lower half-space far from the scatterer, and thus can be reasonably
excluded in practice.

We note that as expected, the limiting time-harmonic waves do not have finite
energy. This property also appears in the one-dimensional example (36).

Step 4 can be omitted and step 5 performed for every j: the linearity of the
problem implies that extra normalizations do not affect the limit. The proof in Ap-
pendix B, however, corresponds to the above algorithm.

The algorithm can also be implemented including a step in which the evanescent
waves are filtered out. If they are not filtered out, however, they will die out anyway
as the iteration proceeds, because experimental time-reversal of a field that includes
evanescent waves is simply another physical field with evanescent waves.
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5. Conclusions and open questions. This analysis shows that the iterative
time-reversal work of [14] and [15] provides an experimental method to obtain optimal
fields. Moreover, this analysis explains the frequency-shifting and pulse-broadening
seen in [15] and [3]: the optimal time-domain waveform is a time-harmonic one tuned
to the best frequency.

This analysis suggests that the commonly used pings and chirps are not optimal
from the point of view of distinguishability.

There are many open questions related to this work, one of which is the question
of limited-aperture and limited-time measurements. Upgoing and downgoing waves
in a limited aperture can be defined with the help of eigenvalues of the Laplacian for
the aperture. However, it is not clear how to determine the entire incident wave if the
incident wave is known in only a limited aperture. This involves a detailed modeling
of the transducer or antenna. Perhaps a formulation in terms of sources will be more
useful in this case [9].

We have not studied the question of whether the distinguishability, as a function
of the medium, is monotone in any sense. This is an important issue for the following
reason. Suppose we discover that a sphere of a certain radius is detectable with
a certain measurement precision. Does this imply that a larger object will also be
detectable? For fixed-frequency measurements, the answer to this question is certainly
no, because of the phenomenon of resonance. A small sphere may happen to have
a radius commensurate with the wavelength of the probing wave and may therefore
scatter much more strongly than a larger sphere. However, the use of time-dependent
fields may give different results.

The simple wave equation studied in this paper does not include the important
effects of variable density, dispersion, and dissipation.

Moreover, the question of distinguishability is only the first step in building an
optimal imaging system. How should we choose a full set of optimal fields that could
be used to form an image?

Appendix A. Properties of S.

A.1. Expression for kernel. We can find an expression for the kernel Ŝ of
(17) and (18) by taking û↓ to be a delta function. The kernel of Ŝ is then the
corresponding upgoing wave û↑. Taking û↓ to be a delta function means that we take
u↓ of the form exp(ikη̃− · x) for some η̃− = (η̃′,−η̃3). Here η̃3 can be complex. We
write the corresponding frequency-domain field as ψ:

ψ(k, x, η̃−) =
1

2π

∫
U(t, x, η̃−)eikc0tdt(41)

so that

û(k, η′, x3, η̃
−) =

∫
ψ(k, x, η̃−)e−ikη′·x′

d2x′.(42)

In the case of scattering from a perturbation in free space, we can express the
total frequency-domain field ψ as a solution of the Lippmann–Schwinger equation

ψ(k, x, η̃) = exp(ikη̃ · x) − k2

∫
g(k, x, y)V (y)ψ(k, y, η̃)d3y,(43)

where g is the usual outgoing Green’s function

g(k, x, y) =
eik|x−y|

4π|x− y|(44)
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and V (y) = 1 − c20/c
2(y). The scattered field u↑ thus is represented by the integral

term of (43).
The Green’s function can be written in terms of its two-dimensional Fourier trans-

form as [2], [4]

g(k, x, y) =
1

(2π)2

∫
i

2kη3
eikη3|x3−y3|eikη

′·(x′−y′)k2d2η′.(45)

To compute A and B of (11), we take the x1, x2 Fourier transform of (43) in the
region x3 > 0. We assume that the perturbation V is supported in the region y3 < 0,
so that when we consider (43) we can remove the absolute values in (45). In the
transform domain, the scattered field is given by

û↑(k, η′, x3, η̃
−) = −k2

∫
i

2kη3

∫
e−ikη+·yV (y)ψ(k, y, η̃−)d2y′dy3e

ikη3x3 .(46)

This shows that

Ŝ(k, η′, η̃′) = − ik

2η3
A(k, η+, η̃−),(47)

where

A(k, η, η̃) =

∫
e−ikη·yV (y)ψ(k, y, η̃)d3y(48)

is a scalar multiple of the classical scattering amplitude [13]. (This A is not to be
confused with the A of (11)!) It satisfies the reciprocity relation

A(k, η, η̃) = A(k,−η̃,−η)(49)

and the symmetry relation (for real-valued perturbations V )

A(k, η, η̃) = A(−k, η, η̃).(50)

It is clear from (47) that Ŝ is an analytic function of k [13].
An expression similar to (47) can be obtained for the field scattered from a per-

turbed half-space or layered medium; in this case the appropriate background Green’s
function should be used instead of the free-space Green’s function in (43). Scattering
theory in such cases is considered, for example, in [19], [20], and [7].

A.2. The adjoint. For a scatterer in free space, the adjoint of PSP in the space
W can be computed explicitly as follows. From (30) we have

(PSPU, V )W = (2π)3
∫ ∞

−∞

∫

|η′|<1

∫

|η̃′|<1
Ŝ(k, η′, η̃′)û(k, η̃′)k2d2η̃′v̂(k, η′)c20k

4η3dkd
2η′

= (2π)3
∫ ∞

−∞

∫

|η′|<1
û(k, η̃′)

∫

|η̃′|<1
Ŝ(k, η′, η̃′)v̂(k, η′)η3d2η′c20k

6dkd2η̃′.

(51)
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From (47), (49), and (50), we have

(PSPU, V )W
(2π)3

=

∫ ∞

−∞

∫

|η′|<1
û(k, η̃′)

∫

|η̃′|<1
−(ik/2)A(k,−η̃−,−η+)v̂(k, η′)d2η′c20k

6dkd2η̃′

=

∫ ∞

−∞

∫

|η′|<1
û(k, η̃′)

∫

|η̃′|<1
(ik/2)A(−k,−η̃−,−η+)v̂(k, η′)d2η′c20k

6dkd2η̃′

=

∫ ∞

−∞

∫

|η̃′|<1
û(k, η̃′)

∫

|η′|<1
Ŝ(−k,−η̃′,−η′)v̂(k, η′)d2η′η̃3(−k)c20k

6dkd2η̃′,

(52)

where in the last equality we have used the fact that Ŝ(−k, η′, η̃′) = ik(2η3)−1

A(−k, η+, η̃−). We note that in the course of this computation, the η3 has disap-
peared and has been replaced by η̃3; this is because of the η3 in the denominator of
(47).

We see that the action of the adjoint (PSP)∗ on V is given in the transform
domain by the η′ integral of (52):

FF−1(PSP)∗FF−1v̂(k, η̃′) =

∫

|η′|<1
Ŝ(−k,−η̃′,−η′)v̂(k, η′)k2d2η′.(53)

However, Ŝ(k, η′, η̃′) is defined by

δ
(
c0(k − k̃)

)
Ŝ(k, η′, η̃′)

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∫
e−ikη′·x′

eikc0tS(t− τ, x′, y′)e−ik̃c0τeikη̃
′·y′

d2x′d2y′dτdt.(54)

From this, we see that

δ
(
c0(k̃ − k)

)
Ŝ(−k,−η′,−η̃′)

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∫
e−ikη′·x′

e−ikc0tS(t− τ, x′, y′)eik̃c0τeikη̃
′·y′

d2x′d2y′dτdt.(55)

Letting t → −t and τ → −τ in (55) shows that the kernel of (53) corresponds to the
operator TPSPT , given by

(TPSPT )V (t, x′) =

∫ ∞

−∞

∫ ∞

−∞
S(τ − t, x′, y′)V (t, y′)dτd2y′.(56)

Thus (PSP)∗ = T (PSP)T .

A.3. Compactness.
Theorem A.1. Assume that the sound speed c(x) is bounded and differs from

c0 only in a bounded subset of the half-space x3 ≤ −h < 0. Then the fixed-frequency
scattering operator Ŝ is compact on the weighted space

L2
g = {f : f(η′)|1 − |η′|2|1/4 ∈ L2}.(57)

Proof. We use (47) and (12) to compute the square of the Hilbert–Schmidt norm
of Ŝ in the space L2

g:

‖Ŝ‖2
H.S. =

k4

4

∫ ∫ ∣∣∣∣
∫

e−ikη·yV (y)ψ(k, y, η̃′)d3y

∣∣∣∣
2 ∣∣∣∣

1 − |η̃′|2

1 − |η′|2

∣∣∣∣
1/2

d2η′d2η̃′.(58)
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We use the fact that ψ can be split into an incident and scattered field via (43).
This allows us to split the kernel (47) into two parts:

Ŝ(k, η, η̃′) = ŜB(k, η, η̃′) + Ŝsc(k, η, η̃
′),(59)

where the “Born” term is

ŜB(k, η, η̃′) = − ik

2η3

∫
eik(η̃−η)·yV (y)d3y,(60)

and

Ŝsc(k, η, η̃
′) =

ik3

2η3

∫
e−ikη·yV (y)

∫
g(y − z)V (z)ψ(k, z, η̃′)d3zd3y.(61)

We compute the Hilbert–Schmidt norm of each part.
The Hilbert–Schmidt norm of the Born term is

‖ŜB‖2
H.S. =

k2

4

∫ ∫ ∣∣∣∣
∫

eik(η̃−η)·yV (y)d3y

∣∣∣∣
2 ∣∣∣∣

1 − |η̃′|2

1 − |η′|2

∣∣∣∣
1/2

d2η′d2η̃′.(62)

The y integral of (62) can be written
∫

eik(η̃′−η′)·y′
e−ik(η̃3+η3)y3V (y)d3y.(63)

For |η′| < 1, for which η3 is real, this integral is bounded when V is integrable. For
|η′| > 1, the integral decays exponentially because V is supported in the region where
y3 ≤ h < 0. The same comments apply to the behavior in η̃′. Thus this integral is
bounded by c exp(−hk(|η′| + |η̃′|)). This estimate can easily be used to show that
‖ŜB‖H.S. is finite.

The Hilbert–Schmidt norm of the scattered part is

‖Ŝsc‖2
H.S.(64)

=
k6

4

∫ ∫ ∣∣∣∣
∫

e−ikη·yV (y)

∫
g(y − z)V (z)ψ(k, z, η̃′)d3zd3y

∣∣∣∣
2 ∣∣∣∣

1 − |η̃′|2

1 − |η′|2

∣∣∣∣
1/2

d2η′d2η̃′.

An application of the Cauchy–Schwarz inequality shows that the y integral of (65)
is bounded by

‖e−ikη·y|V (y)|1/2‖L2(y)

∥∥∥∥|V (y)|1/2
∫

g(y − z)V (z)ψ(k, z, η′)d3z

∥∥∥∥
L2(y)

.(65)

Direct computation shows that the first norm in (65) is bounded by c exp(−hk|η′|).
Standard scattering theory arguments (see Appendix C) can be used to show that
the second norm appearing in (65) is bounded by c exp(−hk|η̃′|); thus the y integral
satisfies the same bounds as in the Born term.

Remark. In [2], it was shown that on L2
g, the operator PŜP has norm less than

or equal to 1.
For future reference, we note that the operator a(k) = (PSP )∗(PSP ) is given

explicitly as

(Faf)(η̃′) =

∫

|η̃′|<1

∫

|ζ′|<1
Ŝ(−k,−η̃′,−ζ ′)Ŝ(k, ζ ′, η′)d2ζ ′f̂(η′)k4d2η′.(66)
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Appendix B. Convergence of the iterative algorithm.
For simplicity of notation we consider only the case when S0 = 0. In this case,

the nth iterate is

U↓
n =

(T (PSP)T (PSP))nU↓
0

((T (PSP)T (PSP))nU↓
0 ,ΨB)W

=
AnU↓

0

(AnU↓
0 ,ΨB)W

,(67)

where A = (PSP)∗(PSP) and the star denotes the adjoint with respect to the
flux inner product (·, ·)W . We simplify the notation by dropping the arrow on
U . Because we expect the limit to be a distribution, we consider the quantity
(Un,Φ)W =

∫
(un, φ)x′c20k

4dk, where Φ is a smooth test function, φ = FΦ, and ( , )x′

denotes the weighted inner product that for smooth functions is (f, φ)x′ = (f̂ , φ̂)L2
g

=
∫
f̂(η′)φ̂(η′)|η3|d2η′.

Specifically, we consider test functions that are functions of t and x′. When inverse
Fourier transformed in t and Fourier transformed in space, at each frequency they
must be in L2

g, and in the frequency variable they must be integrable and (uniformly)
supported in the compact interval [−B,B]. We denote this space of test functions
by X.

In the frequency domain, the nth iteration is F−1(AnU) = anu, where F−1

denotes the inverse Fourier transform (6) and a = F−1AF = (PSP )∗(PSP ). From
our normalization of Un, we have

(Un,ΦB)W =
(AnU,ΦB)W
(AnU,ΨB)W

=

∫
〈anu, φB〉x′c20k

4dk∫
〈anu, ψB〉x′c20k

4dk
.(68)

We note that A and a(k) are self-adjoint and nonnegative operators on the space
W and on L2

g, respectively. Moreover, Theorem A.1 shows that a(k) is compact on
L2
g, and it can therefore be written a(k) =

∑
l λl(k)Pl(k), where λl ≥ λl+1 and the

Pl are orthogonal projections. Because A is nonnegative, all the eigenvalues λl are
nonnegative. We see from (66) that a is analytic in k, and the λ’s are therefore
piecewise analytic [8].

Suppose that λ0(k) attains its maximum in the set {|k| < B} at k0, and that
λ(k) = M . Then in a neighborhood of k0, λ(k) has a Taylor expansion whose first
two terms are M − b(k − k0)p for some b and some integer p. We call p the order
of λ0.

We allow eigenvalues with different indices to coincide at a point; thus it is possible
that a finite number of eigenvalues also attain the maximum M at k0. In this case,
these eigenvalues have a Taylor expansion similar to that of λ0, possibly with different
b’s and p’s. In this case we also refer to the relevant p as the order of the eigenfunction.

We will need the following lemma.
Lemma B.1. Assume that b is positive and that p is an integer. Then for large

n,

I(n, p) =

∫ h

0
(1 − bkp)ndk ∼ C(p)

(bn)1/p
,(69)

where C(p) is a nonzero constant independent of n. Thus the convergence to zero of
I(n, p) is slower for larger p and smaller b.
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Proof. Let s = b1/pk. Then I = b−1/p
∫ b1/ph
0 (1 − sp)nds. Replacing the upper

limit by 1 results in an error that is exponentially small in n. Denote by In the integral∫ 1
0 (1 − sp)nds. Then we can write

In+1 =

∫ 1

0
(1 − sp)(1 − sp)nds = In −

∫ 1

0
sp(1 − sp)nds.(70)

In the integral of (70), we integrate by parts, differentiating s and integrating sp−1(1−
sp)n. The boundary term vanishes, and (70) becomes

In+1 = In − 1

p(n + 1)
In+1.(71)

Solving for In+1 gives the recursion

In+1 =
p(n + 1)

p(n + 1) + 1
In.(72)

Since I0 = 1, we have

In =

(
p

p + 1

)(
2p

2p + 1

)
· · ·

(
np

np + 1

)
.(73)

Taking reciprocals and logs and expanding, we find that

− log In =
n∑

j=1

log(1 + 1/(jp))

=
1

p

n∑

j=1

1

j
−

∞∑

m=2

(−1)m

mpm

n∑

j=1

1

jm
.(74)

Exponentiating and taking reciprocals again, we have

In = C(n, p) exp



−1

p

n∑

j=1

1

j



 ,(75)

where C(n, p) has the large-n limit

lim
n→∞

C(n, p) = exp

( ∞∑

m=2

(−1)m

mpm
ζ(m)

)
,(76)

where ζ(m) denotes the Riemann-zeta function ζ(m) =
∑∞

k=1 k
−m. Thus we see that

the large-n behavior of In is determined by the second factor of (75).
We determine the large-n behavior of this second factor as follows. From approx-

imating the sum by a Riemann integral, we have the estimate

log n ≤ log(n + 1) ≤
n∑

j=1

1

j
≤ 1 + log n.(77)

We multiply by −1/p and exponentiate to obtain

e−1/pn−1/p ≤ exp



−1

p

n∑

j=1

1

j



 ≤ n−1/p.(78)
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Theorem B.2. Assume that a is an analytic self-adjoint-compact-operator-valued
function of k having the representation a(k) =

∑
l λl(k)Pl(k), where λl ≥ λl+1 and

the Pl are orthogonal projections. Assume that λ0 is not a constant function of k.
Then for test functions φB(k, x′) and ψB(k, x′) in X whose support in the frequency
domain is in the set {|k| ≤ B},

lim
n→∞

∫
(anu, φB)x′kdk∫
(anu, ψB)x′kdk

=

∑
l,j βlj(Plu, φB)x′(kj)∑
l,j βlj(Plu, ψB)x′(kj)

,(79)

where the sums are over those indices j and l for which λl(kj) = M , where M is the
maximum of λ0 in the set {k : |k| ≤ B}, and for which λl has maximal order at kj.

Proof. The representation for a allows us to write (68) as

(Un,ΦB)W =

∫ ∑
l λ

n
l (Plu, φB)x′kdk∫ ∑

l λ
n
l (Plu, ψB)x′kdk

.(80)

The λl and Pl are piecewise analytic functions of k [8]. In particular λ0(k) is piecewise
analytic and therefore attains its maximum M on a discrete subset of the set {|k| ≤
B}. We cover the support of φ with open intervals Nj so that each Nj contains only
one kj . We decompose the test function φB as φB =

∑
j φj [5], where the φj are in

C∞
0 (Nj) and φj = φB in a neighborhood of kj . We carry out a similar decomposition

for ψB .
With the notation fl,j(k) = k(Plu, φj)x′ and gl,j(k) = k(Plu, ψj)x′ , we can write

(80) as

(Un,ΦB)W =

∑
l,j

∫
Nj
λnl (k)fl,j(k)dk

∑
l,j

∫
Nj
λnl (k)gl,j(k)dk

.(81)

We divide the numerator and denominator of (81) by Mn and write rl(k) =
λl(k)/M ; thus |r0| ≤ 1, and |rl| < 1 for all but a finite number of values of l. Then
(81) can be written

(Un,ΦB)W =

∑
l,j

∫
Nj

rnl (k)fl,j(k)dk
∑

l,j

∫
Nj

rnl (k)gl,j(k)dk
.(82)

We write

Inl,j =

∫

Nj

rnl (k)fl,j(k)dk.(83)

We multiply and divide Inl,j by
∫
Nj

rn0 (k)dk and write ζnl = rnl /
∫
Nj

rn0 dk.

For those l = 0, 1, . . . , Lj , for which λl attains the maximum M and thus rl
attains the value 1, we add and subtract fl,j(kj) to the quotient, obtaining

Inl,j =

(
fl,j(kj) +

∫

Nj

ζnl (k)(fl,j(k) − fl,j(kj))dk

)∫

Nj

rn0 (k)dk.(84)

We will show that the integral term within the parentheses on the right side of (84)
vanishes as n goes to infinity. For this we use the two facts that (1) except at k = kj ,
ζnl converges to zero pointwise as n goes to infinity; and (2)

∫
ζnl = 1 for all n.
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Given ε > 0, we choose N ε
j so small that on N ε

j , |fl,j(k) − fl,j(kj)| < ε/2. The
integral in parentheses on the right side of (84) we split into two integrals, namely,
An and Bn, where

An =

∫

Nε
j

ζnl (k)(fl,j(k) − fl,j(kj))dk,(85)

and

Bn =

∫

Nj\Nε
j

ζnl (k)(fl,j(k) − fl,j(kj))dk.(86)

Then An < ε/2. Next, we choose N so large that for n greater than N , Bn < ε/2.
This shows that the integral in parentheses on the right side of (84) vanishes as n
goes to infinity. Thus (84) is a product of a factor converging to fl,j(kj) and a factor
converging to zero.

For l = Lj + 1, Lj + 2, . . . , for which λl is strictly less than M , we write

Inl,j =

(∫
ζnl (k)fl,j(k)dk

)∫

Nj

rn0 (k)dk.(87)

In this case, ζnl converges to zero pointwise for all k. Thus the integral in parentheses
of Inl,j converges to zero by the Lebesgue dominated convergence theorem.

To estimate the tail of the sum over l in (82), we choose l0 so large that for l > l0,
rl(k) < 1/2 for all k in Nj . This is possible because the compactness of a implies that
its eigenvalues decrease to zero. Thus for each j we have

∣∣∣∣∣
∑

l>l0

Inl,j

∣∣∣∣∣ =

∣∣∣∣∣
∑

l>l0

∫

Nj

rnl (k)(Plu, φj)x′kdk

∣∣∣∣∣ ≤
1

2n

∫

Nj

∑

l>l0

|(u, ϕl)x′(ϕl, φj)x′k| dk,

(88)
where the ϕl are the normalized eigenfunctions of a. Here it may be necessary to
reindex the sum. Each of the sequences (u, ϕl)x′ and (ϕl, φj)x′ is in l2, and the inner
product of two l2 sequences is in l1. We therefore find that the sum over l is bounded
by ‖u‖k‖φj‖k, where ‖ · ‖k denotes the norm in the space L2

k. Thus we have

∣∣∣∣∣
∑

l>l0

Inl,j

∣∣∣∣∣ ≤
1

2n

∫

Nj

‖u‖k‖φj‖kkdk,(89)

which shows that the tail of the sum converges to zero as n goes to infinity.
The same arguments, of course, apply to the denominator of (82). Thus we see

that the leading order behavior of (82) is given by the expression

(Un,ΦB)W ∼
∑

l,j fl,j(kj)
∫
Nj

rn0 (k)dk
∑

l,j gl,j(kj)
∫
Nj

rn0 (k)dk
,(90)

where the sum in l is over those values for which λl attains the maximum M at kj .
The terms

∫
Nj

rn0 (k)dk, however, go to zero for large n. We must therefore consider

their behavior in more detail.
As we have seen, in the neighborhood of k = kj , r0(k) has an expansion of the

form r0(k) = 1 − bj(k − kj)pj + · · ·, where the positive integer pj is the order of the
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eigenfunction at kj . The lemma shows that the order pj controls the speed with which∫
Nj

rn0 (k)dk goes to zero with n: the larger pj , the more slowly
∫
rN0 dk converges to

zero. We divide the numerator and denominator of (82) by
∫
Nj

rn0 dk corresponding

to the slowest decay. Finally, we take the limit of the resulting quotient as n goes to
infinity. This shows that the quotient (82) converges to

(Un,ΦB)W ∼
∑

l,j βj(Plu, φ)x′(kj)∑
l,j βj(Plu, ψ)x′(kj)

=

∫ ∫ ∑

l,j

βj
Plu(kj , x′)∑

l,i βi(Plu, ψ)x′(ki)
δkj (k)φ(k, x′)d2x′dk,(91)

where the βj are proportional to βj = kjC(pj)/b
1/pj

j , and where the sums are over
those indices j and l for which λl has maximal order at kj .

Corollary B.3. Assume that the sound speed c(x) is bounded and differs from
c0 only in a bounded subset of the half-space x3 ≤ −h < 0. Then for test functions
ΨB ,ΦB in X whose Fourier transforms with respect to time are supported in −B ≤
k ≤ B, Un as defined by (67) converges to

1

2π
∑

l,i βk(Plu, ψB)x′(ki)

∑

l,j

βjPlu(kj , x
′)e−ikjc0t,(92)

where the sums are over those indices j and l for which λl(kj) attains the maximum
M and has maximal order.

Proof. To apply Theorem B.2, we need only check that a = F−1(PSP)∗(PSP)F
is indeed an analytic compact-operator-valued function of k. Analyticity was shown in
section A.1; compactness was shown in section A.3. The largest eigenvalue λ0 cannot
be constant: S is zero at k = 0, which implies that all the λj are zero there. Thus if
λ0 were constant it would be zero, and S itself would be zero.

We note that both the numerator and denominator in (92) can be zero, in which
case (92) is not defined. However we do not study this case since the denominator is
nonzero for a generic test function ΨB .

Appendix C. Results from “standard” scattering theory.
The solution of the equation

(∇2 + k2 − V (x))ψ(k, x) = 0(93)

corresponding to an incident plane wave and a scattered field satisfying outgoing
boundary conditions satisfies the Lippmann–Schwinger integral equation

ψ(k, x, η̃′) = exp(ikη̃ · x) − k2

∫
g(k, x, y)V (y)ψ(k, y, η̃′)d3y,(94)

where g is the usual outgoing Green’s function (44).
The initial difficulty with the Lippmann–Schwinger equation is that the incident

field has infinite energy. This difficulty, however, can be circumvented by multiplying
the whole equation by |V (x)|1/2 [18]. This converts (94) into

ζ(k, x, η̃′) = ζ0(k, x, η̃
′) + k2

∫
K(k, x− y)ζ(k, y, η̃′)d3y,(95)
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where

ζ(k, x, η̃′) = |V (x)|1/2ψ(k, x, η̃′),(96)

ζ0(k, x, η̃
′) = |V (x)|1/2eikη̃·x,(97)

V1/2(y) = V (y)/|V (y)|1/2,(98)

K(x, y) = |V (x)|1/2g(k, x, y)V1/2(y).(99)

When V has compact support, (95) is an integral equation on a bounded region,
and the kernel K is an Hilbert–Schmidt-valued function that is analytic in the entire
complex k-plane. By the analytic Fredholm theorem [16], the integral equation (95)
is therefore uniquely solvable everywhere except at a discrete set of values of k (the
“exceptional points”) and moreover the solution ζ is a meromorphic function of k
with poles at these exceptional points. In addition, the arguments of [1], [17] show
that the only possible real exceptional point is k = 0. However, when k = 0, (95)
reduces to the equation ζ = |V |1/2. Thus the operator (I − k2K)−1 is analytic in a
neighborhood of the real k-axis.

This argument shows that for each k, ζ = |V |1/2ψ is in L2. Then the quantity
needed in section A.3, namely, ‖|V |1/2

∫
gV ψ‖, can be rewritten as ‖Kζ‖ = ‖K(I −

K)−1ζ0‖ ≤ ‖K‖‖(I − K)−1‖‖ζ0‖. Moreover, by explicit computation, we see that
‖ζ0(k, ·, η̃′)‖ ≤ ce−hk|η̃′|, where V is supported in the region y3 ≤ −h < 0.
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