Software for numerical algebraic geometry: a
paradigm and progress towards its
implementation

Daniel J. Bates® Jonathan D. Hauenstein®

Andrew J. Sommese Charles W. Wampler 118

February 16, 2007

Abstract

Though numerical methods to find all the isolated solutions of non-
linear systems of multivariate polynomials go back 30 years, it is only
over the last decade that numerical methods have been devised for the
computation and manipulation of algebraic sets coming from polynomial
systems over the complex numbers. Collectively, these algorithms and
the underlying theory have come to be known as numerical algebraic ge-
ometry. Several software packages are capable of carrying out some of
the operations of numerical algebraic geometry, although no one package
provides all such capabilities. This paper contains an enumeration of the
operations that an ideal software package in this field would allow. The
current and upcoming capabilities of Bertini, the most recently released
package in this field, are also described.

2000 Mathematics Subject Classification. Primary 65H10; Sec-
ondary 65H20, 65-04, 14Q99.

*Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, MN
55122 (dbates1@nd.edu, www.nd.edu/~dbates1) This author was supported by the Duncan
Chair of the University of Notre Dame, the University of Notre Dame, NSF grant DMS-
0410047, the Arthur J. Schmitt Foundation, and the Institute for Mathematics and its Appli-
cations in Minneapolis (IMA)

TDepartment of Mathematics, University of Notre Dame, Notre Dame, IN 46556
(jhauenst@nd.edu, www.nd.edu/~jhauenst). This author was supported by the Duncan Chair
of the University of Notre Dame, NSF grant DMS-0410047, and the Institute for Mathematics
and its Applications in Minneapolis (IMA)

iDepartment of Mathematics, University of Notre Dame, Notre Dame, IN 46556
(sommese@nd.edu, www.nd.edu/~sommese). This author was supported by the Duncan
Chair of the University of Notre Dame, the University of Notre Dame, NSF grant DMS-
0410047, and the Institute for Mathematics and its Applications in Minneapolis (IMA)

§General Motors Research and Development, Mail Code 480-106-359, 30500 Mound Road,
Warren, MI 48090 (Charles. W.Wampler@gm.com, www.nd.edu/~cwamplel) This author was
supported by NSF grant DMS-0410047 and the Institute for Mathematics and its Applications
in Minneapolis (IMA)

Key words and phrases. Homotopy continuation, numerical algebraic
geometry, polynomial systems, software, Bertini.

1 Introduction

Numerical algebraic geometry refers to the application of numerical methods to
compute the solution sets of polynomial systems, generally over C. In partic-
ular, basic numerical algebraic geometry embodies probability one algorithms
for computing all isolated solutions of a polynomial system as well as the nu-
merical irreducible decomposition of an algebraic set, i.e., one or more points
on each irreducible component in each dimension. More recently, numerical al-
gebraic geometry has grown to include more advanced techniques which make
use of the basic methods in order to compute data of interest in both real-world
applications and pure algebraic geometry.

One of the key tools used in the algorithms of numerical algebraic geome-
try is homotopy continuation [1, 16], a method for finding all zero-dimensional
solutions of a polynomial system. Given a polynomial system f : CN — C"
to be solved by homotopy continuation, one first forms a polynomial system g
that is related to f in a prescribed way but has known, or easily computable,
solutions. The systems g and f are combined to form a homotopy, such as the
linear homotopy H(x,t) = f-(1—t)+~-t-g where v € C is randomly chosen. For
a properly formed homotopy, there are continuous solution paths leading from
the solutions of g to those of f which may be followed using predictor-corrector
methods. Singular solutions cause numerical difficulties, so singular endgames
[17, 18, 19] are typically employed. Zero-dimensional solving is discussed further
in section 2.2.

Numerical algebraic geometry treats both zero-dimensional (isolated) solu-
tions and positive dimensional solution sets. The building blocks of the solution
set of a set of equations are the irreducible components. These are the algebraic
subsets Z of the solution set, i.e., those connected sets of points with neighbor-
hoods biholomorphic to a neighborhood of a Euclidean space. The solution set
breaks up into a union of a finite number of irreducible components, none of
which is contained in the union of the remaining components. Witness sets are
the basic data structure used to numerically describe and manipulate positive
dimensional solution sets. Given a multiplicity one irreducible component Z of
a system of polynomials f(x) = 0, a witness set consists of a triple (f, L, W),
where L is a random linear space of dimension complementary to that of Z and
where W is a set of points such that W := Z N L. There is a slightly more
involved definition for the case of components of multiplicity greater than one
as described in [24].

Many of the algorithms of numerical algebraic geometry make abundant
use of homotopy continuation. For example, the cascade algorithm [20], one of
the basic methods for computing the numerical irreducible decomposition of an
algebraic set, uses repeated applications of homotopy continuation at different

dimensions in order to produce points on each component in each dimension.
Monodromy and the trace test then lead to the complete numerical irreducible
decomposition of the solution set of f. In the end, the user obtains from the
methods of numerical algebraic geometry a wealth of information regarding the
characteristics of the solution set of a given polynomial system, some of which
may be difficult to procure by purely symbolic means. For good references on
zero-dimensional solving see [13, 16] and for numerical algebraic geometry see
[24].

There are several software packages available to the public which carry out
some of the operations of numerical algebraic geometry. However, no one pack-
age contains all such capabilities. These packages include HOM4PS [6], PHoM
[9], POLSYS [27], PHCpack [28], and HomLab [30]. The most recently released
package, Bertini [2], is under ongoing development by the authors. Although all
software packages were developed at different times for different reasons, they
share the goal of solving polynomial systems by numerical means.

The purpose of the present paper is two-fold. One purpose is to present
a paradigm for software in the field of numerical algebraic geometry. The fol-
lowing section contains an elaboration on the aforementioned algorithms and
an enumeration of the various operations required for carrying out those algo-
rithms, broken into four levels. Implementation-specific details, such as data
structures, are omitted. The other purpose is to provide a brief introduction to
Bertini and indicate its partial fulfillment of the paradigm of section 2. That
is the content of section 3, which is also broken up into four levels to mirror
section 2. The final section includes planned extensions of the Bertini software
package.

2 A paradigm for numerical algebraic geometry
software

All good software packages share several characteristics. In particular, good
software should be reliable (i.e., it provides correct output with clear signals
upon failure), as fast as possible with estimates of time remaining for large jobs,
modular for easy modification, and user-friendly. In addition, good numerical
software must be accurate and provide error estimates for all solutions. Reliabil-
ity and accuracy generally have an adverse impact on speed, so while efficiency
is important, it should not be emphasized over finding correct answers.

Numerical accuracy may be approached in two ways. One approach is to
use a fixed level of precision and find as accurate a solution as possible, possibly
using higher levels of precision for subsequent runs to attain more accuracy, if
necessary. The other approach is to select an accuracy before the run and adjust
the precision during the run to attain that accuracy. Either way, it has recently
become generally accepted that it is important to have available multiple levels
of precision when implementing numerical routines.

The purpose of this section is to provide an enumerated paradigm for soft-
ware specifically in the field of numerical algebraic geometry. This detailed
list is broken into four levels, beginning with very basic operations not spe-
cific to polynomial system solving at level 0 in section 2.1 and moving through
extensions of basic numerical algebraic geometry at level 3 in section 2.4. The
operations of each level build upon the capabilities of the previous level. Each of
the following four sections begins with a discussion of the necessary operations
of the given level and the resulting capabilities of the software. Each section
then concludes with a brief list of the main operations to be implemented at
that level. All operations should be implemented for various levels of precision,
ideally for arbitrarily high precision.

2.1 Level 0: Basic operations

At the very core of a numerical polynomial solver, one must of course have
access to basic arithmetic both of complex numbers and complex matrices. It
is important to optimize the efficiency of this arithmetic as much as possible,
particularly in high precision, as most operations in numerical algebraic ge-
ometry rely heavily upon arithmetic. In addition to basic matrix arithmetic,
standard techniques from numerical linear algebra are needed. Among the most
important are Gaussian elimination for linear solving, QR factorization for least
squares and orthogonal complements, and the SVD for finding numerical ranks.
See [5, 26] for general references on numerical linear algebra, while [14] provides
a more efficient method for determining the numerical rank of a matrix.

Random numbers play a key role in numerical algebraic geometry as many
statements hold generically, i.e., for almost all random choices, thereby making
the resulting algorithms hold with probability one. Any standard random num-
ber generator will suffice, although it is best to have the chosen random complex
numbers of approximately unit modulus, for stability. It is also important to
have a consistent mechanism for extending the precision of a randomly chosen
complex number. In particular, upon extending the precision of a random num-
ber a to make &, truncating back to lower precision, and then again extending
the precision, one should once again obtain &.

It is of course necessary to somehow obtain the polynomials of interest from
the user, although the specific procedure for doing so is implementation-specific.
To build a general solver, it is important to allow the functions to be defined
as expressions built from subexpressions. This is beneficial not only for ease
of use, but also for efficiency and numerical stability. It is also necessary for
generality to allow for homotopies that depend on parameters, including analytic
expressions as discussed in more detail in the following section. If the user is
specifying the entire homotopy, it is also necessary to have a way for the user to
provide solutions to the start system g. Otherwise, the automatically generated
start system should be solved by the software.

Regardless of how the input data is provided, parsed, and stored, it is at
times necessary for the software to automatically homogenize the polynomials

provided by the user. Homogenization is simply the mechanism for moving from
a product of one or more complex spaces to a product of complex projective
spaces. This is a purely symbolic operation which should be implemented in
such a way as to be easily reversed in case the need arises. Suppose the homog-
enized system involves the cross product of v projective spaces. Then v random
nonhomogeneous linear equations, one for each projective space in the product,
should be appended to the system in order to choose a patch on each complex
projective space. These v linear equations are known as the patch polynomials.

Basic path tracking makes heavy use of both function evaluation and Jaco-
bian evaluation. Basic function evaluation is straightforward, although it could
be optimized via specialized techniques such as Horner’s method. The Jacobian
(i.e., the matrix of partial derivatives of the polynomials) should be computed
automatically by some form of automatic differentiation so that the user does
not need to provide it as input. It is generally believed that the Jacobian should
be computed explicitly rather than approximated numerically, for stability.

Some of the operations at this level are common to numerical software in
general, regardless of the specific application. It should be noted that existing
libraries, such as LAPACK, provide robust implementations of some of these
operations, albeit in one level of precision.

Summary of level 0 operations:

e Complex scalar and matrix arithmetic

e Matrix operations (e.g., linear solving, numerical ranks, and orthogonal
complements)

e Random number generation
e Parsing of input data

e Function homogenization

e Function evaluation

e Jacobian evaluation

e All numerical operations should be available in multiprecision

2.2 Level 1: Basic tracking and zero-dimensional solving

It is now possible to glue together the capabilities of level 0 to build algorithms
leading up to a full zero-dimensional solver, i.e., a method for computing all
isolated solutions of f. The concept of “solving” a system could be interpreted
two ways. Given a desired accuracy e € RY, let S := {s € CV : |f(s)] < €}.
This set may break up into k disconnected pieces, say S = S U...U Sg. Then
one interpretation of solving is to find a z € S; for each i. The second way to
interpret “solving” f is to find, for each s € C" such that f(s) = 0 and s has

multiplicity m as a root of f, a set {21, ..., zm} C C¥ such that |z; — s| < € for
all . The solutions in the former sense of solving depend upon the scaling of the
polynomials while those of the latter depend upon the scaling of the variable.
The latter is more widely accepted as correct and is thus the definition used
throughout this paper.

As discussed in section 1, homotopy continuation casts the system f in
a family of polynomial systems, another of which is g. Such parameterized
families sometimes arise naturally and are of great interest in some applications.
Other families are artificially constructed for the specific purpose of solving f by
continuation, in a so-called ab initio homotopy. Often a naturally parameterized
family can be used to define a homotopy that has fewer paths to follow than
an ab initio homotopy. As a result, software in numerical algebraic geometry
should address both ab initio and natural parameter homotopies. The natural
parameter spaces may be complex analytic and thus the need for evaluating
complex analytic expressions of parameters and complex numbers as mentioned
in the previous section.

At its core, homotopy continuation is simply a sequence of steps advancing
the path variable and updating the solution vector x to match. Each step
forward consists of a predictor step followed by a sequence of corrector steps.
The prediction is commonly carried out by Euler’s method, which steps along
the tangent to the path. This is generally regarded as an acceptable approach,
although secant prediction can also be employed, as can higher order methods
such as Runge-Kutta. Once a prediction is made to a new value of ¢, it is
necessary to refine the point back towards the solution curve. This may be
accomplished by fixing ¢ and running a Newton-like corrector until the norm of
the Newton residual has dropped below a prespecified tolerance.

Naturally, there are times when steps will fail, where failure is declared
when the corrector does not converge sufficiently fast. Such step failures need
not trigger path failure. Rather, adaptive steplength should be utilized. Upon
step failure when using adaptive steplength, the steplength is decreased by a
prespecified factor in the hope that convergence will occur for a smaller step.
Only if progress along the path becomes excessively slow is the path declared
a failure. Conversely, if the steps are progressing well, it is worthwhile to try
to increase the steplength. More details regarding prediction, correction, and
adaptive steplength may be found in [1, 16, 24].

Path failure may occur for a number of reasons, but the presence of a singu-
larity, particularly at ¢t = 0, is a common cause. There are several sophisticated
algorithms known as endgames that help to speed convergence at ¢ = 0 for both
nonsingular and singular endpoints. These endgames are typically employed for
every path, so it is important to have at least one implemented in any software
package for numerical algebraic geometry. Details regarding endgames may be
found in [17, 18, 19].

For zero-dimensional solving, polynomial systems given by the user could be
nonsquare with n > N. Fortunately, Bertini’s theorem [24] guarantees that a

new system consisting of N generic linear combinations of the original n poly-
nomials will have among its solutions all the isolated solutions of the original
system, though possibly with increased multiplicity. It may also have nonsingu-
lar isolated extraneous solutions. The extraneous solutions are easily detected
as they do not satisfy the original system.

Unless the user chooses to specify a parameter homotopy, the software must
be able to automatically produce an appropriate start system g, solve it, and
attach it to the homogeneous, square system f in order to create the homotopy
H. There are several methods for producing start systems, although the general
rule is that the computational cost increases in order to produce start systems
with fewer paths to track. Among the common choices, total degree start sys-
tems, consisting of polynomials of the form xfl —1, where d; is the degree of the
it" polynomial in f, are trivial to build and solve but have the largest number
of paths to be tracked (that being the product of the degrees of the functions).
At the other end of the spectrum, the construction and solution of sophisticated
polyhedral homotopies involve far more computation time but may result in far
fewer paths (the number of which is the mixed volume). It is not clear a priori
which type of start system is best-suited for an arbitrary polynomial system, so
it is important to have multiple types of start systems available.

Once all (or most) of the aforementioned operations have been implemented,
it is possible to compute the zero-dimensional solutions of a given polynomial
system. Two other useful tools belong at this level. First, deflation [11] is a
symbolic means of constructing a new polynomial system f from f such that f
has a nonsingular solution in place of a particular singular solution of f. This
helps to speed the convergence of Newton’s method if run at ¢ = 0. The major
drawback of implementing deflation is that decisions need to be made about the
rank of the Jacobian matrix at the solution point before the solution point in
known accurately. The use of endgames can improve the accuracy of the solution
estimate before deflation, helping to ensure that correct deflation sequence is
performed but adding the cost of the endgame computations. Exploration of
the numerical stability and efficiency of deflation and endgames is a topic of
ongoing research. The big advantage of deflation comes at the next level when
dealing with positive dimensional components of multiplicity greater than one.

The other useful tool at this level is a post-processor to manipulate and
display the solutions computed by the solver as well as any statistics gathered
during tracking. As the functionality of such a tool is application-specific, no
more details will be discussed here.

Summary of level 1 operations:

e Differential equation solving, e.g., Euler’s method
e Newton’s method
e Basic path tracking with adaptive steplength control

e Adaptive precision path tracking

e Squaring of systems

e Start system and homotopy generation
e Start system solving

e Full zero-dimensional solving

e Endgames

e Deflation

e Post-processing of zero-dimensional data

2.3 Level 2: Positive-dimensional solving

The solution set Z of a polynomial system f may have several components and
these may not all have the same dimension. Letting D := dim Z, the irreducible
decomposition may be written as Z = U2 Z; = U2, Ujer, Z; j, where each Z; ;
is an irreducible component of dimension ¢, and accordingly each Z; is the pure
i-dimensional component of Z.

One of the key objectives in numerical algebraic geometry is to find a nu-
merical irreducible decomposition of Z, which consists of sets Z; ;N L y_;, where
Ly_; is a generic linear subspace of dimension NV —i. W ;, together with Ly_;,
is known as a witness set for Z; ;, and by abuse of notation, W; = Ujer, W, ;
is called a witness set for Z;. We briefly describe the algorithms for computing
the irreducible decomposition below. Full details may be found in the references
cited below or in [24].

The main steps in computing a numerical irreducible decomposition are:

e find witness supersets W; D W; for each dimension i,
e prune out “junk points” from W; to extract the witness sets W;, and

e break W; into distinct sets W; ;, the witness sets for the irreducible com-
ponents Z; ;.

The witness supersets W; are generated by the application of zero-dimensional
solving to find the isolated points in the slice Z N Ly_;. All of the W;, for
0 < i < D, can be obtained using the cascade algorithm [20], starting at i = D
and cascading sequentially down to 7 = 0. The junk points in W; must lie on
some Z; with j > 4. Thus, the junk may be removed by testing each point p € W;
for membership in a higher-dimensional component. This can be done using
continuation on slices to see if any of the witness sets W, j > ¢ connect to p as
the slicing linear space Ly _; is moved continuously until it contains p. The final
break up of W; into irreducibles is accomplished by first using monodromy, which
comes down to discovering connections between witness points as the linear
slicing space is moved around a closed loop in the associated Grassmannian

[21]. This is followed by checking if the connected groups so discovered are
complete, by means of the trace test [22]. The trace method may also be used
to complete a partial decomposition. Both monodromy and the trace method
involve specialized continuation of slices and careful bookkeeping.

Squaring is a concern for positive-dimensional solving just as it is for zero-
dimensional solving. Although much carries over, one difference is that the
size to which the system should be squared depends on the dimension of the
component, e.g., for components of dimension k, the defining system should be
randomized to a system of N — k equations.

Given witness data for an algebraic set Z, there are three operations of
particular interest for users. First, a user might want to find many points on
a specific component. This is known as sampling and is very closely related
to monodromy, as both use the continuation of slices to move witness points
around on the component. Second, a user might want to know if a given point
lies on an irreducible component of Z. This is the same component membership
test used in the junk removal stage of computing an irreducible decomposition.
Finally, a user might want the accuracy of some endpoint sharpened. This is
just a matter of running Newton’s method appropriately, perhaps after deflating
f. Of course, as in the previous section, a post-processor would be appropriate,
although the exact functionality is again application-specific.

Deflation is particularly valuable as a method for multiple components, e.g.,
to track intersections of a multiplicity greater than one component with a one-
parameter family of linear spaces of complementary dimension as is done to
sample a multiple component. Roughly speaking, if Z is a k-dimensional com-
ponent of the solution set of a system f = 0, then the computation of the
deflation of Z N L for f restricted to a generic k-codimensional linear space
gives rise to a “deflation” of the whole component. At the expense of increasing
the number of variables, this allows us to numerically treat all components as
multiplicity one components.

Summary of level 2 operations:

e Continuation of slices

e Monodromy

e Traces

e Squaring of systems for positive-dimensional solving
e Cascade algorithm

e Full numerical irreducible decomposition

e Sampling

e Component membership

e Endpoint sharpening

e Post-processing of witness data

e Deflation for components

2.4 Level 3: Extensions and applications of the basics

This highest level consists of operations that make use of the basic numerical
algebraic geometry maneuvers described in the previous three levels. For exam-
ple, for two algebraic sets X and Y which are the solution sets of polynomial
systems f and g, respectively, suppose one has witness data Wx and Wy for
X and Y but would like a witness set W for X NY. There is a now a method
[23] for computing the numerical irreducible decomposition of such an intersec-
tion, the inclusion of which, while not essential for basic software in numerical
algebraic geometry, will be important as the field continues to develop.

There are several other advanced algorithms that should be included in a
complete state-of-the-art implementation. Another such technique is that of
[25], which provides a way of finding exceptional sets, i.e., the sets of points in
the parameter space above which the fiber has dimension higher than the generic
fiber dimension. Fiber products play a key role in this algorithm and therefore
need to be available in the software before the method for finding exceptional
sets may be implemented. Also, in real-world applications, real solutions are
often of more interest than complex solutions, so the extraction of real solutions
from the numerical irreducible decomposition, for example, by an extension of
the method of [15], would be very useful.

This is not intended to be a complete list, and it is anticipated that many
more operations could be added in the near future. One capability, though,
that is important now and will only become more essential over time, is par-
allelization. Although not every algorithm of numerical algebraic geometry is
fully parallelizable, basic path tracking is easily parallelized so great savings can
be made throughout levels 1, 2, and 3 by doing so [10, 12, 27, 29].

Summary of level 3 operations:

e Intersection of components

Fiber products

Finding exceptional sets

Extracting real solution sets from complex components

e Parallelization

3 Bertini

Bertini [2] is a new software package under ongoing development by the authors
for computation in the field of numerical algebraic geometry. Bertini itself has

10

evolved from a program called Polysolve created by Bates, C. Monico (Texas
Tech University), Sommese and Wampler, although nothing substantial remains
in Bertini from Polysolve.

Bertini is written in the C programming language and makes use of several
specialized libraries, particularly lex and yacc for parsing and GMP and MPFR
for multiple precision support. The beta version of Bertini was released in
October 2006 to coincide with the Software for Algebraic Geometry workshop
of the Institute for Mathematics and its Applications. It is currently anticipated
that Bertini 1.0 will be made available to the public sometime in 2007. Bertini
is currently only available as an executable file for 32- or 64-bit Linux and for
Windows, via Cygwin. Specific instructions for using Bertini are included with
the distribution and on the Bertini website.

Among other things, Bertini is capable of producing all complex isolated
solutions of a given polynomial and witness sets for each positive-dimensional
irreducible component. The goal of the Bertini development team is to even-
tually include in Bertini all operations described above in sections 2.1 through
2.4. The purpose of this section is to indicate briefly which of those operations
are already available in the beta version of Bertini. The specific algorithms
implemented are also described, when appropriate. Details regarding the devel-
opment plans for Bertini 1.0 and beyond may be found in sections 4.1 and 4.2,
respectively.

3.1 Level O

By default, Bertini uses IEEE double precision, although it also allows for any
fixed level of precision available in MPFR. In particular, precision is available
starting from 64 bits, increasing in 32 bit increments. Furthermore, the beta ver-
sion of Bertini allows the user to select adaptive precision for zero-dimensional
solving. In adaptive precision mode, Bertini begins in double precision and
increases precision as necessary, determined by the algorithm described in [3].

All matrix operations described in section 2.1 have already been implemented
in Bertini with the exception of the QR algorithm, which will be implemented
by the next release. Gaussian elimination with scaled partial pivoting is used
for linear solving. The SVD algorithm is based on the description provided in
[26].

Bertini uses the basic random number generator found in the C standard
library. Each random number is scaled to be of the appropriate modulus and
stored as an exact rational number with the denominator a power of ten. Thus,
to increase precision, all new digits are set to zero, although this is not ideal.
It would be better to increase precision using randomly chosen digits such that
subsequent truncations and extensions result in the same additional digits. This
will be changed in a future version of Bertini.

The user provides polynomials (either the entire homotopy or just the target
system) to Bertini in a file which is parsed using lex and yacc. The polynomials

11

are stored in straight-line format for easy automatic differentiation and homoge-
nization as well as efficient evaluation. Any optimization, such as using Horner’s
method, is the responsibility of the user. Homogenization is carried out as the
polynomials are being parsed, and differentiation is carried out after the en-
tire system has been parsed, currently via forward automatic differentiation as
described in [8].

Bertini allows the user to include constants and subfunctions when defining
the target system and also the path variable and parameters when defining a
homotopy. There are various restrictions placed on the homogeneous structures
allowed depending upon the scenario, but multiple variable groups are generally
supported. All coefficients, constants, and other numbers are stored as exact
rational numbers, as described for random numbers above, and are assumed to
be exact. As a result, function and Jacobian evaluation are available at any
level of precision. Analytic functions of constants and parameters are not yet
supported.

3.2 Levell

All level 1 operations of section 2.2 have been implemented in Bertini with the
exception of deflation. Euler’s method is used as the predictor, and Newton’s
method as the corrector. The fractional power series endgame [19] is available
in basic precision, fixed higher precision, and adaptive precision.

All polynomial systems are automatically squared to the appropriate number
of polynomials and variables, although the details of the squaring mechanism are
excluded from the present paper for brevity. If the user specifies only the target
system and variable groupings, Bertini multihomogenizes the system according
to the groupings and attaches a compatible m-homogeneous start system via
a linear homotopy. Each polynomial in the start system consists of a product
of random linear functions matching the homogeneous structure of the corre-
sponding target polynomial. If there is only one variable group, the result is
a total degree start system. Bertini also has a post-processor which collects
the endpoint data for the run and creates a number of files, some of which are
human-readable and some of which are better suited for machine reading. The
files provide lists of singular endpoints, nonsingular endpoints, real endpoints,
and so on. Important path characteristics, such as an estimate of the error in
the endpoint, are also supplied in these files. Bertini also indicates whether any
paths failed (and why they did) and whether any path crossing occurred prior
to the endgame.

3.3 Level 2

All of the operations of level 2 described in section 2.3 have been implemented
in double precision in Bertini, with the exceptions of endpoint sharpening and
deflation. Before a positive-dimensional run, users have the option of comput-

12

ing the numerical irreducible decomposition of the polynomial system input
file, sampling a component of a system for which witness data has previously
been computed, or performing component membership on such a system. The
algorithms are then carried out as described in section 2.3 and [24].

In the case of computing the numerical irreducible decomposition, Bertini
stores all data in memory until the end of the run. At the end of the run, a
postprocessor sorts the data and creates a number of files, as in the case of a zero-
dimensional run. The structure of the algebraic set is also provided in a table
on the screen, namely the number of irreducible components of each degree in
each dimension. Additional details may be found in the Bertini documentation
available in [2].

3.4 Level 3

None of the level 3 operations described in section 2.4 are available in the beta
version of Bertini. Much of the further development of Bertini will involve level
3 operations.

4 The future for Bertini

It is of course impossible to predict what will happen with either Bertini or nu-
merical algebraic geometry in the distant future. However, there is a short-term
development plan for Bertini. The following sections describe the development
plan for Bertini 1.0 and further anticipated developments beyond Bertini 1.0.

4.1 Bertini 1.0

There are several key developments currently in the process of being imple-
mented in order to move Bertini from the beta version to version 1.0. The four
main improvements are the inclusion of the cascade algorithm in fixed multiple
precision as well as adaptive precision, deflation in both the zero- and positive-
dimensional cases, endpoint sharpening (as described in section 2.2), and the
QR algorithm. Other improvements are minor, such as several small changes to
the output files and an improved post-processor. The goal is to have most of
the operations of levels 0, 1, and 2 available in Bertini 1.0 in each fixed level of
precision and adaptive precision.

4.2 Beyond Bertini 1.0

While there will certainly be a number of changes to the core functions of Bertini
after version 1.0 is released (such as improving the way that random numbers
are handled), many of the major changes will involve the implementation of the
operations at level 3 and new algorithms currently under development.

13

Other planned extensions include allowing the user to specify analytic func-
tions of parameters and constants, the inclusion of polyhedral methods, e.g.,
using MixedVol [7], and various forms of parallelization. Bertini currently oper-
ates by setting up files with input data, calling Bertini, and reading the results
from files. It is anticipated that Bertini will eventually include a scripting lan-
guage or make use of software that provides an interactive environment. Bertini
will also undergo a move from the C programming language to C++ sometime
after the release of version 1.0, both for increased modularity and for easier
extension. Finally, Bertini will eventually make use of more efficient multipreci-
sion numerical libraries as they become available and will include interfaces to
other software packages commonly used in the mathematics community.

References

[1] E.L. Allgower and K. Georg. Introduction to numerical continuation meth-
ods. Classics in Applied Mathematics, 45. SIAM, Philadelphia, 2003.
Reprint of the 1990 edition (Springer-Verlag, Berlin).

[2] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler.
Bertini: Software for Numerical Algebraic Geometry. Available at
www.nd.edu/~sommese/bertini.

[3] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler. Multi-
precision path tracking. Preprint, 2007.

[4] D.F. Davidenko. On a new method of numerical solution of systems of
nonlinear equations. Doklady Acad. Nauk SSSR (N.S.) 88:601-602, 1953.

[5] J.W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia,
1997.

[6] T. Gao and T.Y. Li. HOMA4PS. Software available at
www.csulb.edu/~tgao.

[7] T. Gao, T.Y. Li, and M. Wu. Algorithm 846: MixedVol: A software
package for mixed-volume computation. ACM Trans. Math Software,
31(4):555-560, 2005. Software available at www.csulb.edu/~tgao.

[8] A. Griewank. FEuvaluating derivatives. Principles and techniques of al-
gorithmic differentiation. Frontiers in Applied Mathematics, 19. STAM,
Philadelphia, 2000.

[9] T. Gunji, S. Kim, M. Kojima, A. Takeda, K. Fujisawa, and T. Mizu-
tani. PHoM-—a polyhedral homotopy continuation method for poly-
nomial systems. Computing 73(1):55-77, 2004. Software available at
www.is.titech.ac.jp/~kojima.

14

[10]

T. Gunji, S. Kim, K. Fujisawa, and M. Kojima. PHoMpara—parallel im-
plemenation of the Polyhedral Homotopy continuation Method for poly-
nomial systems. Computing 77(4):387-411, 2006.

A. Leykin, J. Verschelde, and A. Zhao. Evaluation of jacobian matri-
ces for Newton’s method with deflation for isolated singularities of poly-
nomial systems. In SNC 2005 Proceedings. International Workshop on
Symbolic-Numeric Computation. Xi’an, China, July 19-21, 2005. Edited
by Dongming Wang and Lihong Zhi. pp. 19-28.

A. Leykin, J. Verschelde and Y. Zhuang. Parallel Homotopy Algorithms to
Solve Polynomial Systems. Mathematical Software - ICMS 2006, Second
International Congress on Mathematical Software, Castro Urdiales, Spain,
September 1-3, 2006, Proceedings. Lecture Notes in Computer Science,
Springer, 4151: 225-234, 2006.

T.Y. Li. Numerical solution of multivariate polynomial systems by homo-
topy continuation methods. Acta Numer. 6:399-436, 1997.

T.Y.Liand Z. Zeng. A rank-revealing method with updating, downdating,
and applications. STAM J. Matriz Anal. Appl. 26(4):918-946, 2005.

Y. Lu, D.J. Bates, A.J. Sommese, and C.W. Wampler. Finding all real
points of a complex curve. Preprint, 2006.

A.P. Morgan. Solving polynomial systems using continuation for engineer-
ing and scientific problems. Prentice-Hall, Englewood Cliffs, N.J., 1987.

A.P. Morgan, A.J. Sommese, and C.W. Wampler. Computing singular
solutions to nonlinear analytic systems. Numer. Math. 58(7):669-684,
1991.

A.P. Morgan, A.J. Sommese, and C.W. Wampler. Computing singular
solutions to polynomial systems. Adv. Appl. Math. 13(3):305-327, 1992.

A.P. Morgan, A.J. Sommese, and C.W. Wampler. A power series method
for computing singular solutions to nonlinear analytic systems. Numer.
Math. 63(3):391-409, 1992.

A.J. Sommese and J. Verschelde. Numerical homotopies to compute
generic points on positive dimensional algebraic sets. J. Complexity
16(3):572-602, 2000.

A.J. Sommese, J. Verschelde, and C.W. Wampler. Using monodromy to
decompose solution sets of polynomial systems into irreducible compo-
nents. Applications of algebraic geometry to coding theory, physics and
computation(Eilat, 2001), NATO Sci. Ser. II Math. Phys. Chem., 36,
Kluwer Acad. Publ., Dordrecht, 2001.

15

[22]

[23]

[30]

A.J. Sommese, J. Verschelde, and C.W. Wampler. Symmetric functions
applied to decomposing solution sets of polynomial systems. SIAM J.
Num. Anal. 40(6):2026-2046, 2002.

A.J. Sommese, J. Verschelde, and C.W. Wampler. Homotopies for inter-
secting solution components of polynomial systems. SIAM J. Num. Anal.
42(4):1552-1571, 2004.

A.J. Sommese and C.W. Wampler. Numerical solution of systems of poly-
nomials arising in engineering and science. World Scientific, Singapore,
2005.

A.J. Sommese and C.W. Wampler. Exceptional sets and fiber products.
Preprint, 2006.

G.W. Stewart. Matriz algorithms. Vol. I. Basic decompositions. SIAM,
Philadelphia, 1998.

H.-J. Su, J. McCarthy, M. Sosonkina, and L.T. Watson. Algorithm 857:
POLSYS_GLP — A parallel general linear product homotopy code for solv-
ing polynomial systems of equations. ACM Trans. Math. Software 32(4):
561-579, 2006. Software available at www.vrac.iastate.edu/~haijunsu.

J. Verschelde. Algorithm 795: PHCpack: a general-purpose solver for
polynomial systems by homotopy continuation. ACM Trans. Math. Soft-
ware 25(2): 251-276, 1999. Software available at www.math.uic.edu/~jan.

J. Verschelde and Y. Zhuang. Parallel implementation of the polyhedral
homotopy method. ICPPW °06: Proceedings of the 2006 International
Conference Workshops on Parallel Processing. IEEE Computer Society,
Washington, DC, 481-488, 2006.

C.W. Wampler. HomLab: Homotopy Continuation Lab. Software avail-
able at www.nd.edu/~cwamplel.

16

