
http://www.dealii.org/ Wolfgang Bangerth

MATH 676

–

Finite element methods in
scientific computing

Wolfgang Bangerth, Texas A&M University

http://www.dealii.org/ Wolfgang Bangerth

Lecture 32.5:

Learning to use modern tools, part 5a:

Version control systems (VCSs)

Subversion

http://www.dealii.org/ Wolfgang Bangerth

Rationale

Version control systems were invented a long time
ago to:

● Keep a history of changes
● Keep a record of why a change was made
● Allow undoing a change
● Allow going back to a defined state in the past

● As a sort of backup

Later extensions:
● Facilitate collaboration
● Track authorship

http://www.dealii.org/ Wolfgang Bangerth

Current state

Today, there are essentially two open source systems
left:*

● Subversion
● Git

Despite differences, their design shares many
commonalities.

(* There are many other open source systems, but they are no longer
widely used. There are also many commercial systems.)

http://www.dealii.org/ Wolfgang Bangerth

The general idea of VCSs

Using subversion (svn) as an example:
● There is a central location where svn stores all files of

your project
● Anyone with permission can get a copy of these files onto

their local drive
● You can modify your local copy
● When done, you upload your version to the central

location
● The VCS now stores both old and new versions

Note 1: VCSs always store all versions of your project!

Note 2: In reality, project files may be stored in a database
instead of files; only diffs between versions are stored.

http://www.dealii.org/ Wolfgang Bangerth

The general idea of VCSs

Using subversion (svn) as an example:
● There is a central location where svn stores all files of

your project (the “repository”)
● Anyone with permission can get a copy of these files onto

their local drive (“checking out” a “working copy”)
● You can modify your local copy
● When done, you upload your version to the central

location (you “commit” your version)
● The VCS now stores both old and new versions

Note 1: VCSs always store all versions of your project!

Note 2: In reality, project files may be stored in a database
instead of files; only diffs between versions are stored.

http://www.dealii.org/ Wolfgang Bangerth

Version numbers

Using subversion (svn) as an example:
● The repository contains all versions of your project
● Every commit increases the version number by one
● Every commit has an author, a date, and a message

● We can search for commits by author, date and message

● We can check out a particular version to a working copy
● We can update a working copy to a particular version

● We can update a working copy to the current HEAD

http://www.dealii.org/ Wolfgang Bangerth

Collaborative work

Using subversion (svn) as an example:

● Checking out

● Editing

● Checking in (committing)

● Viewing the history of a file

● Viewing who changed what

● Conflicts

...let's see how this works in practice...

http://www.dealii.org/ Wolfgang Bangerth

Branching and merging

Using subversion (svn) as an example:

● A branch is simply a copy of the main development
directory in the repository

● We can merge changes that have been made on mainline
to the branch

● We can merge the branch back to mainline

...let's see how that works in practice...

http://www.dealii.org/ Wolfgang Bangerth

Mainline, branches and merges

Mainline, branches, HEAD and
tags are often visualized as a
growing tree:

Note: Revisions are sequentially
numbered and can be individually
addressed.
(E.g.: “The error was introduced
in r32985.”)

http://www.dealii.org/ Wolfgang Bangerth

Collaborating with others

If you are writing software or papers with others:
● Check out a working copy from the repository
● Edit it (fix bugs, implement features, write text, …)

● Recall that you're working with others:
– Test your implementation!
– Document it!
– Proof read your text!

● If you have write access:
– Commit your changes
– Commit all related changes as one revision
– Include a meaningful commit message

– Do not include unrelated changes; commit separately

http://www.dealii.org/ Wolfgang Bangerth

Collaborating with others

If you are writing software or papers with others:
● Check out a working copy from the repository
● Edit it (fix bugs, implement features, write text, …)

● Recall that you're working with others:
– Test your implementation!
– Document it!
– Proof read your text!

● If you do not (yet) have write access:
– Send a complete patch to someone who does
– Include a meaningful description
– Ask them to commit it on your behalf

– Repeat, after a few times you will get write access :-)

http://www.dealii.org/ Wolfgang Bangerth

Summary

Do use VCSs!
● For small projects:

– allows you to work on different machines
– allows to go back to the “state before the bug”

● For larger projects:
– preserves history of code (including metadata)
– allows collaboration
– allows attribution of authorship

Note: All professionally developed software today uses
VCSs. Learn how they work by using them!

http://www.dealii.org/ Wolfgang Bangerth

MATH 676

–

Finite element methods in
scientific computing

Wolfgang Bangerth, Texas A&M University

	Slide 392
	Slide 393
	Slide 394
	Slide 395
	Slide 396
	Slide 397
	Slide 398
	Slide 399
	Slide 400
	Slide 401
	Slide 404

