MATH 676

Finite element methods in scientific computing

Wolfgang Bangerth, Texas A\&M University

Lecture 31.7:

Nonlinear problems

Part 5: Pseudo-time stepping for the minimal surface equation

The minimal surface equation

Consider the minimal surface equation:

$$
\begin{aligned}
-\nabla \cdot\left(\frac{A}{\sqrt{1+|\nabla u|^{2}}} \nabla u\right) & =f & & \text { in } \Omega \\
u & =g & & \text { on } \partial \Omega
\end{aligned}
$$

where we choose

$$
\Omega=B_{1}(0) \subset \mathbb{R}^{2}, \quad f=0, \quad g=\sin (2 \pi(x+y))
$$

Goal: Solve this numerically with via pseudo-time stepping.

Pseudo-time stepping

General approach: To solve

$$
L(u)=f
$$

by pseudo-time stepping, we seek the limit

$$
u(x)=\lim _{\tau \rightarrow \infty} \bar{u}(x, \tau)
$$

where $\bar{u}(x, \tau)$ solves

$$
\frac{\partial \bar{u}(x, \tau)}{\partial \tau} \pm L(\bar{u})= \pm f
$$

Note: is an artificial "time-like" variable. We will call it pseudo-time.

Pseudo-time stepping

Requirements: To find a stationary limit of $\bar{u}(x, \tau)$ where

$$
\frac{\partial \bar{u}(x, \tau)}{\partial \tau} \pm L(\bar{u})= \pm f
$$

we need that this time-dependent equation

- has a solution,
- the solution is unique
- the solution converges to a steady state as $\quad \tau \rightarrow \infty$
- convergence is independent of the starting point
- the steady state is stable

Pseudo-time stepping

General guide: To find a stationary limit of $\bar{u}(x, \tau)$ where

$$
\frac{\partial \bar{u}(x, \tau)}{\partial \tau} \pm L(\bar{u})= \pm f
$$

choose the sign so that

- the operator

$$
I \pm \epsilon G(\bar{u}) \quad \text { (where } G(\bar{u}) \bar{u}=L(\bar{u}) \text {) }
$$

is a contraction for a sufficiently small

$$
\epsilon>0
$$

- the resulting equation is something that resembles a known "physical" equation

Pseudo-time stepping

Example: Solve $-\Delta u=f$ by finding the limit of

$$
\frac{\partial \bar{u}(x, \tau)}{\partial \tau} \pm(-\Delta \bar{u}(x, \tau))= \pm f(x)
$$

We have two options:

- Plus sign:

$$
\frac{\partial \bar{u}(x, \tau)}{\partial \tau}-\Delta \bar{u}(x, \tau)=f(x)
$$

This is the well-known heat equation: Unique solution!

- Minus sign:

$$
\frac{\partial \bar{u}(x, \tau)}{\partial \tau}+\Delta \bar{u}(x, \tau)=-f(x)
$$

This is the "backward heat equation": No unique solution!

Pseudo-time stepping

Boundary + initial values: To solve

$$
\begin{aligned}
L(u) & =f & & \text { in } \Omega \\
u & =g & & \text { on } \partial \Omega
\end{aligned}
$$

by pseudo-time stepping using the equation

$$
\frac{\partial \bar{u}(x, \tau)}{\partial \tau} \pm L(\bar{u})= \pm f(x)
$$

we need boundary and initial values:

$$
\begin{array}{ll}
\bar{u}(x, \tau)=g(x) & \text { on } \partial \Omega \times(0, \infty) \\
\bar{u}(x, 0)=\bar{u}_{0}(x) & \text { in } \Omega
\end{array}
$$

Note 1: We can (usually) choose initial conditions arbitrarily. Note 2: But means faster convergence!

Pseudo-time stepping

Pseudo-time discretization: Do time stepping scheme on

$$
\begin{aligned}
\frac{\partial \bar{u}(x, \tau)}{\partial \tau} \pm L(\bar{u}) & = \pm f(x) & & \text { in } \Omega \times(0, \infty) \\
\bar{u}(x, \tau) & =g(x) & & \text { on } \partial \Omega \times(0, \infty) \\
\bar{u}(x, 0) & =\bar{u}_{0}(x) & & \text { in } \Omega
\end{aligned}
$$

For example, try the implicit Euler method:

$$
\begin{aligned}
\frac{\bar{u}^{n}(x)-\bar{u}^{n-1}(x)}{\Delta \tau} \pm L\left(\bar{u}^{n}\right) & = \pm f(x) & & \text { in } \Omega \\
\bar{u}^{n}(x, \tau) & =g(x) & & \text { on } \partial \Omega
\end{aligned}
$$

Problem: If $L(u)$ is nonlinear, then this equation is still nonlinear in u^{n} - we wanted something linear!

Pseudo-time stepping

Pseudo-time discretization: Do time stepping scheme on

$$
\begin{aligned}
\frac{\partial \bar{u}(x, \tau)}{\partial \tau} \pm L(\bar{u}) & = \pm f(x) & & \text { in } \Omega \times(0, \infty) \\
\bar{u}(x, \tau) & =g(x) & & \text { on } \partial \Omega \times(0, \infty) \\
\bar{u}(x, 0) & =\bar{u}_{0}(x) & & \text { in } \Omega
\end{aligned}
$$

For example, try the explicit Euler method:

$$
\begin{aligned}
\frac{\bar{u}^{n}(x)-\bar{u}^{n-1}(x)}{\Delta \tau} \pm L\left(\bar{u}^{n-1}\right) & = \pm f(x) & & \text { in } \Omega \\
\bar{u}^{n}(x, \tau) & =g(x) & & \text { on } \partial \Omega
\end{aligned}
$$

Problem: If $L(u)$ is a second order differential operator, we may have to take very small time steps! (See lecture 27.)

Pseudo-time stepping

Pseudo-time discretization: Do time stepping scheme on

$$
\begin{aligned}
\frac{\partial \bar{u}(x, \tau)}{\partial \tau} \pm L(\bar{u}) & = \pm f(x) & & \text { in } \Omega \times(0, \infty) \\
\bar{u}(x, \tau) & =g(x) & & \text { on } \partial \Omega \times(0, \infty) \\
\bar{u}(x, 0) & =\bar{u}_{0}(x) & & \text { in } \Omega
\end{aligned}
$$

For example, try a semi-implicit Euler method:

$$
\begin{aligned}
\frac{\bar{u}^{n}(x)-\bar{u}^{n-1}(x)}{\Delta \tau} \pm G\left(\bar{u}^{n-1}\right) \bar{u}^{n} & = \pm f(x) & & \text { in } \Omega \\
\bar{u}^{n}(x, \tau) & =g(x) & & \text { on } \partial \Omega
\end{aligned}
$$

Here: Choose $G(u) u=L(u)$ where $G(u)$ is a linear operator. (See previous lecture.)

Pseudo-time stepping

Pseudo-time discretization: Do time stepping scheme on

$$
\begin{aligned}
\frac{\partial \bar{u}(x, \tau)}{\partial \tau} \pm L(\bar{u}) & = \pm f(x) & & \text { in } \Omega \times(0, \infty) \\
\bar{u}(x, \tau) & =g(x) & & \text { on } \partial \Omega \times(0, \infty) \\
\bar{u}(x, 0) & =\bar{u}_{0}(x) & & \text { in } \Omega
\end{aligned}
$$

For example, try a semi-implicit method + extrapolation:

$$
\begin{aligned}
\frac{\bar{u}^{n}(x)-\bar{u}^{n-1}(x)}{\Delta \tau} \pm G\left(\widetilde{u}^{n}\right) \bar{u}^{n} & = \pm f(x) & & \text { in } \Omega \\
\bar{u}^{n}(x, \tau) & =g(x) & & \text { on } \partial \Omega
\end{aligned}
$$

Here: Extrapolate from previous time steps, e.g.

$$
\widetilde{u}^{n}=\bar{u}^{n-1}+\frac{\bar{u}^{n-1}-\bar{u}^{n-2}}{\Delta \tau} \Delta \tau=2 \bar{u}^{n-1}-\bar{u}^{n-2}
$$

Pseudo-time stepping

Pseudo-time discretization: Do time stepping scheme on

$$
\begin{aligned}
\frac{\partial \bar{u}(x, \tau)}{\partial \tau} \pm L(\bar{u}) & = \pm f(x) & & \text { in } \Omega \times(0, \infty) \\
\bar{u}(x, \tau) & =g(x) & & \text { on } \partial \Omega \times(0, \infty) \\
\bar{u}(x, 0) & =\bar{u}_{0}(x) & & \text { in } \Omega
\end{aligned}
$$

Goal: Use a method that

- is stable
- allows us to take large time steps
- does not have to be particularly accurate
- does not necessarily have to follow a "physical" trajectory as long as the limit is correct!

Minimal surface equation

Concrete application: Solve the minimal surface equation

$$
\begin{aligned}
-\nabla \cdot\left(\frac{A}{\sqrt{1+|\nabla u|^{2}}} \nabla u\right) & =f & & \text { in } \Omega \\
u & =g & & \text { on } \partial \Omega
\end{aligned}
$$

Step 1: Find the steady state limit of

$$
\begin{aligned}
\frac{\partial \bar{u}}{\partial \tau}-\nabla \cdot\left(\frac{A}{\sqrt{1+|\nabla \bar{u}|^{2}}} \nabla \bar{u}\right) & =f & & \text { in } \Omega \\
\bar{u} & =g & & \text { on } \partial \Omega
\end{aligned}
$$

Note: Choose sign as in the heat equation.

Minimal surface equation

Step 2: For

$$
\begin{aligned}
\frac{\partial \bar{u}}{\partial \tau}-\nabla \cdot\left(\frac{A}{\sqrt{1+|\nabla \bar{u}|^{2}}} \nabla \bar{u}\right) & =f & & \text { in } \Omega \\
\bar{u} & =g & & \text { on } \partial \Omega
\end{aligned}
$$

choose a semi-implicit discretization:

$$
\begin{aligned}
\frac{\bar{u}^{n}-\bar{u}^{n-1}}{\Delta \tau_{n}}-\nabla \cdot\left(\frac{A}{\sqrt{1+\left|\nabla \bar{u}^{n-1}\right|^{2}}} \nabla \bar{u}^{n}\right) & =f & & \text { in } \Omega \\
\bar{u}^{n} & =g & & \text { on } \partial \Omega
\end{aligned}
$$

Note: This choice likely already implies a time step restriction.

Minimal surface equation

Step 3: For

$$
\begin{aligned}
\bar{u}^{n}-\Delta \tau_{n} \nabla \cdot\left(\frac{A}{\sqrt{1+\left|\nabla \bar{u}^{n-1}\right|^{2}}} \nabla \bar{u}^{n}\right) & =\bar{u}^{n-1}+\Delta \tau_{n} f & & \text { in } \Omega \\
\bar{u}^{n} & =g & & \text { on } \partial \Omega
\end{aligned}
$$

choose a space discretization (here: finite elements):

$$
\left(\phi_{h}, \bar{u}^{n}\right)+\Delta \tau_{n}\left(\nabla \phi_{h},\left(\frac{A}{\sqrt{1+\left|\nabla \bar{u}^{n-1}\right|^{2}}} \nabla \bar{u}^{n}\right)\right)=\left(\phi_{h}, \bar{u}^{n-1}+\Delta \tau_{n} f\right) \quad \forall \phi_{h} \in V_{h}
$$

Note: We need to also enforce the correct boundary conditions.

Minimal surface equation

Step 4: For

$$
\begin{aligned}
\bar{u}^{n}-\Delta \tau_{n} \nabla \cdot\left(\frac{A}{\sqrt{1+\left|\nabla \bar{u}^{n-1}\right|^{2}}} \nabla \bar{u}^{n}\right) & =\bar{u}^{n-1}+\Delta \tau_{n} f & & \text { in } \Omega \\
\bar{u}^{n} & =g & & \text { on } \partial \Omega
\end{aligned}
$$

choose a suitable time step $\Delta \tau_{n}$:

- Small enough to be "reasonably accurate"
- Large enough to get to infinity "reasonably quickly"
- In practice: increase time step over tim
- Terminate iteration once solution "is converged"

Adapting step-26

Let's adapt step-26 for this purpose!

- If necessary:
- read through step-26
- watch lectures 26, 27, 29
- Change boundary values (previously: zero)
- Change right hand side (here: zero)
- Implement different stiffness matrix
- Left out:
- time step size control
- termination criterion

MATH 676

Finite element methods in scientific computing

Wolfgang Bangerth, Texas A\&M University

