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Lecture 31.7:

Nonlinear problems

Part 5: Pseudo-time stepping
for the minimal surface equation
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The minimal surface equation

Consider the minimal surface equation:

where we choose

Goal: Solve this numerically with via pseudo-time stepping.

−∇⋅( A

√1+|∇ u|2
∇ u)  = f     in Ω

                                u  = g     on ∂Ω

Ω=B1(0)⊂ℝ
2 ,         f =0,         g=sin (2π(x+ y ))
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Pseudo-time stepping

General approach: To solve

by pseudo-time stepping, we seek the limit

where               solves

Note:       is an artificial “time-like” variable. We will call it 
pseudo-time.

L(u)  = f

u(x)=lim τ→∞ ū(x , τ)

∂ ū(x , τ)
∂ τ

±L(ū)  = ±f

ū(x , τ)

τ
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Pseudo-time stepping

Requirements: To find a stationary limit of               where

we need that this time-dependent equation

● has a solution,

● the solution is unique

● the solution converges to a steady state as

● convergence is independent of the starting point

● the steady state is stable

∂ ū(x , τ)
∂ τ

±L(ū)  = ±f

ū(x , τ)

τ→∞
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Pseudo-time stepping

General guide: To find a stationary limit of               where

choose the sign so that

● the operator

is a contraction for a sufficiently small

● the resulting equation is something that resembles a 
known “physical” equation

∂ ū(x , τ)
∂ τ

±L(ū)  = ±f

ū(x , τ)

ϵ>0

I±ϵG(ū)             (where G (ū)ū=L(ū))
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Pseudo-time stepping

Example: Solve                 by finding the limit of

We have two options:

● Plus sign:

This is the well-known heat equation: Unique solution!

● Minus sign:

This is the “backward heat equation”: No unique solution!

∂ ū(x , τ)
∂ τ

±(−Δ ū(x , τ))  = ± f ( x)

−Δu  =  f

∂ ū(x , τ)
∂ τ

−Δ ū(x , τ)  = f (x )

∂ ū(x , τ)
∂ τ

+Δ ū(x , τ)  =  −f (x)
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Pseudo-time stepping

Boundary + initial values: To solve

by pseudo-time stepping using the equation

we need boundary and initial values:

Note 1: We can (usually) choose initial conditions arbitrarily.
Note 2: But                           means faster convergence!

L(u)  = f            in Ω
     u  =  g            on ∂Ω

∂ ū(x , τ)
∂ τ

±L(ū)  = ±f (x)

ū(x , τ)  =  g(x )           on ∂Ω×(0,∞)
ū(x ,0)  = ū0( x)          in Ω

ū0(x )  ≈  u(x )
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Pseudo-time stepping

Pseudo-time discretization: Do time stepping scheme on

For example, try the implicit Euler method:

Problem: If  L(u)  is nonlinear, then this equation is still 
nonlinear in  un  –  we wanted something linear!

∂ ū(x , τ)
∂ τ

±L(ū)  = ±f (x )      in Ω×(0,∞)

              ū(x , τ)  = g (x)         on ∂Ω×(0,∞)

              ū(x ,0)  =  ū0(x)        in Ω

ūn
( x)−ūn−1

(x )
Δ τ

±L(ūn)  = ± f ( x)           in Ω

                        ūn
(x , τ)  = g (x)              on ∂Ω
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Pseudo-time stepping

Pseudo-time discretization: Do time stepping scheme on

For example, try the explicit Euler method:

Problem: If  L(u)  is a second order differential operator, we 
may have to take very small time steps! (See lecture 27.)

∂ ū(x , τ)
∂ τ

±L(ū)  = ±f (x )      in Ω×(0,∞)

              ū(x , τ)  = g (x)         on ∂Ω×(0,∞)

              ū(x ,0)  =  ū0(x)        in Ω

ūn
( x)−ūn−1

(x )
Δ τ

±L(ūn−1)  =  ±f (x)           in Ω

                           ūn
(x , τ)  = g(x )              on ∂Ω
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Pseudo-time stepping

Pseudo-time discretization: Do time stepping scheme on

For example, try a semi-implicit Euler method:

Here: Choose  G(u)u = L(u)  where  G(u)  is a linear 
operator. (See previous lecture.)

∂ ū(x , τ)
∂ τ

±L(ū)  = ±f (x )      in Ω×(0,∞)

              ū(x , τ)  = g (x)         on ∂Ω×(0,∞)

              ū(x ,0)  =  ū0(x)        in Ω

ūn
( x)−ūn−1

(x)
Δ τ

±G(ūn−1)ūn  =  ±f (x )           in Ω

                                ūn
(x , τ)  = g (x)             on ∂Ω
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Pseudo-time stepping

Pseudo-time discretization: Do time stepping scheme on

For example, try a semi-implicit method + extrapolation:

Here: Extrapolate from previous time steps, e.g.

∂ ū(x , τ)
∂ τ

±L(ū)  = ±f (x )      in Ω×(0,∞)

              ū(x , τ)  = g (x)         on ∂Ω×(0,∞)

              ū(x ,0)  =  ū0(x)        in Ω

ūn
( x)−ūn−1

(x )
Δ τ

±G(~u n)ūn  = ±f ( x)           in Ω

                             ūn
( x , τ)  = g (x)              on ∂Ω

~u n  = ūn−1
+
ūn−1

−ūn−2

Δ τ Δ τ  = 2 ūn−1
−ūn−2
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Pseudo-time stepping

Pseudo-time discretization: Do time stepping scheme on

Goal: Use a method that
● is stable
● allows us to take large time steps

● does not have to be particularly accurate
● does not necessarily have to follow a “physical” trajectory 

as long as the limit is correct!

∂ ū(x , τ)
∂ τ

±L(ū)  = ±f (x )      in Ω×(0,∞)

              ū(x , τ)  = g (x)         on ∂Ω×(0,∞)

              ū(x ,0)  =  ū0(x)        in Ω
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Minimal surface equation

Concrete application: Solve the minimal surface equation

Step 1: Find the steady state limit of

Note: Choose sign as in the heat equation.

−∇⋅( A

√1+|∇ u|2
∇ u)  = f     in Ω

                                u  = g     on ∂Ω

∂ ū
∂ τ

−∇⋅( A

√1+|∇ ū|2
∇ ū)  = f      in Ω

                                       ū  = g     on ∂Ω
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Minimal surface equation

Step 2: For

choose a semi-implicit discretization:

Note: This choice likely already implies a time step 
restriction.

ūn
−ūn−1

Δ τn
−∇⋅( A

√1+|∇ ūn−1
|
2
∇ ūn)  = f     in Ω

                                                   ūn  =  g     on ∂Ω

∂ ū
∂ τ

−∇⋅( A

√1+|∇ ū|2
∇ ū)  = f      in Ω

                                       ū  = g     on ∂Ω
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Minimal surface equation

Step 3: For

choose a space discretization (here: finite elements):

Note: We need to also enforce the correct boundary 
conditions.

ūn
−Δ τn ∇⋅( A

√1+|∇ ūn−1|2
∇ ūn)  = ūn−1

+Δ τn f     in Ω

                                                ūn  =  g                    on ∂Ω

(φh , ū
n )+Δ τn(∇ φh ,( A

√1+|∇ ūn−1
|
2
∇ ūn))  = (φh , ū

n−1
+Δ τn f )     ∀φh∈V h
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Minimal surface equation

Step 4: For

choose a suitable time step       :
● Small enough to be “reasonably accurate”
● Large enough to get to infinity “reasonably quickly”

● In practice: increase time step over tim

● Terminate iteration once solution “is converged”

ūn
−Δ τn ∇⋅( A

√1+|∇ ūn−1|2
∇ ūn)  = ūn−1

+Δ τn f     in Ω

                                                ūn  =  g                    on ∂Ω

Δ τn
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Adapting step-26

Let's adapt step-26 for this purpose!

● If necessary:
– read through step-26
– watch lectures 26, 27, 29

● Change boundary values (previously: zero)
● Change right hand side (here: zero)
● Implement different stiffness matrix

● Left out:
– time step size control
– termination criterion
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