
MATH 546: Partial Differential Equations II
Instructor: Prof. Wolfgang Bangerth

Weber 214
bangerth@colostate.edu

Lectures: Engineering E 206, Mondays/Wednesdays/Fridays, 11-11:50am
Office hours: Wednesdays, 1-2pm; or by appointment.

Homework assignment 4 – due Friday 4/26/2019

There are a number of ways in which one can define “broken Sobolev spaces” such as H1/2, and to everyone’s
chagrin, these ways do not lead to the same outcome. As a consequence, when people talk about H1/2, one
has to pay attention to what definition they have used. The principal difference between these definitions is
always whether the discontinuous step function is just so in, or just so not in the space. You should read
this last sentence by thinking of there being a continuum of functions, starting with very nice ones (like
the sine function), gradually becoming worse (functions that have a kink like |x|, or a cusp like

√
|x|), then

becoming discontinuous but bounded (like the step function), to functions with singularities (like 1/x) where
the function becomes infinite, and finally functions like the delta function that is zero everywhere except at
a single point where it is infinite. Function spaces generally contain all functions “up to some point” on this
continuum, and the question is whether the step function is just in or just out of what’s in the space H1/2.

This week’s homework is around the various kinds of definitions and whether the step function is a
member of the space with a given definition. For simplicity, we’ll only consider this in 1d.

Problem 1 (The space H1/2, take 1: Via the Fourier transform). If one thinks of the space Hk

as the space of functions that have k square integrable (weak) derivatives, then H1/2 would be the space
of functions that have half a derivative. This is hard to understand in terms of what such a half derivative
should actually be, but we can define it as follows: Recall that the Fourier transformat satisfies the property

F
[
dj

dxj
f(x)

]
(k) =

1√
2π

∫ ∞
−∞

[
dj

dxj
f(x)

]
eikx dx

= (−1)j
1√
2π

∫ ∞
−∞

f(x)

[
dj

dxj
eikx

]
dx

= (−1)j
1√
2π

∫ ∞
−∞

f(x)(ik)jeikx dx

= (−ik)j
1√
2π

∫ ∞
−∞

f(x)eikx dx

= (−ik)jF [f ](k).

The key step here was simply the integration by parts from the first to the second line. It is not difficult to
see that a similar formula holds when the domain on which f is defined is finite: then we can say that the
Fourier transform

F [f(x)] = {ak}∞k=0

simply yields the (infinite) collection of Fourier coefficients ak so that

f(x) =

∞∑
k=0

ake
ikx.
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By a similar argument as above, one then obtains that the Fourier coefficients of the derivatives of f are
given by

F
[
dj

dxj
f(x)

]
= {(ik)jak}∞k=0.

Because the Fourier transform is invertible, we also have

dj

dxj
f = F−1

(
F
[
dj

dxj
f

])
= F−1

(
(−ik)jF [f ]

)
.

This formula is useful because we can now talk about what it means to take a half-derivative: we just choose

j = 1/2 in this last formula – we can then compute
(

d
dx

)1/2
f by just doing the forward and inverse Fourier

transform. Of course, this can also be done with any other j, whether it is an integer or not, and whether
it is positive or not.

So let’s come back to the original question: Is the step function

h(x) =

{
0 if x < 0,

1 if x ≥ 0

defined on the interval Ω = (−1, 1) in the space H1/2(Ω)? As usual, we will say that a function u is in Hs(Ω)
if it is in L2(Ω) and its sth derivative is square integrable.

To answer this question, you will need to figure out whether
(

d
dx

)1/2
h is square integrable. For this,

you have to (i) find the Fourier series of h, and (ii) use the Plancherel identity that in the current context
really just says that the L2 norm of a function with Fourier coefficients bk equals the sum of squares of the
bk (potentially up to a constant, depending on how exactly one defines the Fourier transform). The latter is
useful because you won’t have to do the awkward inverse Fourier transform.

While you’re there, answer the following question:

• If your answer is that h ∈ H1/2, then is h also in the spaces H1/2+ε for any ε > 0?

• If your answer is that h 6∈ H1/2, then is h at least in the spaces H1/2−ε for any ε > 0?

(30 points)

Problem 2 (The space H1/2, take 2: Slobodeckij’s definition). Let’s take a different definition of
Hs where s may not be an integer: We say that a function u ∈ L2 is in the space Hs if its Hs-norm is finite,
where this norm is defined as follows:

‖u‖Hs(Ω) =

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|2s+d
dy dx.

Here, d is the dimension of the domain Ω. Again, this definition (originally given by Slobodeckij) is valid for
arbitrary 0 < s < 1. (If you wanted to define the space H3/2 in this way, you’d check that u ∈ H1 and that
∇u ∈ H1/2.)

Answer the same questions as for Problem 1:

• Is h ∈ H1/2 using this definition of the space?

• If your answer is that h ∈ H1/2, then is h also in the spaces H1/2+ε for any ε > 0?

• If your answer is that h 6∈ H1/2, then is h at least in the spaces H1/2−ε for any ε > 0?

(30 points)
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Problem 3 (The space H1/2, take 3). The last way we’ll consider here in which one could define the
space H1/2(Ω) on a one-dimensional domain Ω is a bit backward because it doesn’t quite give a statement
one can easily check. It assumes that the one-dimensional domain Ω is (a subset of) the boundary of a
two-dimensional domain Σ ⊂ R2, i.e., Ω ⊂ ∂Σ. Since we’re considering Ω = (−1, 1), we can for example
choose the rectangle Σ = (−1, 1) × (0, 1) or the half circle Σ = {x ∈ R2 : ‖x‖ < 1 andx2 > 0} or any other
similar domain that is convenient.

Then take a close look at the following statement: We define H1/2(Ω) as

H1/2(Ω) =
{
ϕ ∈ L2(Ω) : there exists u ∈ H1(Σ) so that TΩu = ϕ

}
.

Here, TΩ is the trace operator that takes the boundary values of u on the part of the boundary of Σ that is
Ω. In other words, H1/2(Ω) is the set of all possible boundary values that functions u ∈ H1(Σ) can have.
You’ll note that unlike the two other definitions, this one really is specific to an index of 1/2 and can’t easily
be generalized to other fractional values.

As before, check whether h ∈ H1/2(Ω) using this definition. (20 points)

Problem 4 (The spaces Hk and their Fourier basis). We briefly talked about this in class: Just like
Rn, one can give the spaces Hk a basis. There are of course many bases one could choose, but the simplest
one (and in many situations the most convenient one) is the Fourier basis.

For this purpose, let’s stay in 1d and for convenience choose Ω = (0, 2π). Then every function in Hk
0 (Ω)

can be written as

u(x) =

∞∑
j=1

aj sin(jx) = a1 sin(x) + a2 sin(2x) + . . .

Prove the following statements:

1. If the coefficients aj of a function u(x) satisfy the condition |aj | = O
(

1
j1/2+ε

)
for some ε > 0 – that

is, if there is C <∞ so that limj→∞
|aj |

1/j1/2+ε = C – then u ∈ L2(Ω).

2. If the coefficients aj of a function u(x) satisfy the condition |aj | = O
(

1
j3/2+ε

)
for some ε > 0, then

u ∈ H1(Ω).

3. If the coefficients aj of a function u(x) satisfy the condition |aj | = O
(

1
jk+1/2+ε

)
for some ε > 0 and

some k ≥ 0, then u ∈ Hk(Ω).

This last condition in essence says that if the Fourier coefficients of a function decay rapidly enough, then
the function is smooth – something that makes sense if one thinks of how one can see functions as multiples
of sines and cosines with successively higher frequencies piled on top of each other.

For our purposes, this last condition also allows us to define membership in spaces Hk where k is not an
integer. This is of course what we did in Problem 1. (20 points)

Bonus problem (The space H−1 and its Fourier basis). The space of functions H−1(Ω) is the set of
all functions u(x) so that ∫

Ω

u(x)v(x) dx

is finite for all possible v ∈ H1. Take again Ω = (0, 2π) and show the following generalization of the results
of the previous problem to the case k = −1. In other words, show the following statement:

1. If the coefficients aj of a function u(x) satisfy the condition |aj | = O
(

1
j−1+1/2ε

)
for some ε > 0, then

u ∈ H−1(Ω).
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To get an understanding of how such functions look like, generate sequences of coefficients aj (for example,
chosen randomly in some way) that satisfy the conditions for H1, L2, H−1 and plot these functions. Do they
look qualitatively different? (20 points)
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