Part 7.9

An application: Support Vector Machines

Goal: "Supervised learning" – given two data sets of different objects, find a way to "classify" any new points by finding a "separator".

Issue 1: There may be many separators, even just among the linear ones.

Source: https://towardsdatascience.com/support-vector-machine-vs-logistic-regression-94cc2975433f

Issue 2: There may be no *linear* classifier, even though there may be nonlinear ones.

Source: Medium.com

Issue 3: It may not be reasonable to find a *perfect* classifier.

Source: blog.statsbot.co

Approach: Classification is an optimization problem!

In the simplest case: We are looking for a straight line that *minimizes the number of misclassifications.*

Goal: We are looking for a straight line that *minimizes the number* of *misclassifications*.

Formulation: Assume we have data points (x_i, y_i) :

- x_i are the coordinates of the points.
- y_i is +1 if the point is part of data set 1
- y_i is -1 if the point is part of data set 2

Parameterization of the straight-line classifier:

- w is a direction vector
- *b* is a multiplier.

The straight line is given by w.x - b = 0.

Parameterization of the straight-line classifier:

- w is a direction vector
- *b* is a multiplier.

The straight line is given by w.x - b = 0.

Then:

- A point on the "near" side of the line has w.x b < 0
- A point on the "far" side of the line has w.x b > 0

Want:

- Data set 1 (y=+1) to be on the "near" side
- Data set 2 (y=-1) to be on the "far" side

Have:

- A point on the "near" side of the line has w.x b < 0
- A point on the "far" side of the line has w.x b > 0

Want:

- Data set 1 (y=+1) to be on the "near" side
- Data set 2 (y=-1) to be on the "far" side

Then optimize by counting misclassified points: minimize_{w,b} $f(w,b) = \sum_{i} \chi(y_i(w \cdot x_i - b))$

with
$$\chi(z)=1$$
 if $z>0$,
 $\chi(z)=0$ if $z\leq 0$

Optimize by counting misclassified points:

minimize_{w,b}
$$f(w,b) = \sum_{i} \chi(y_i(w \cdot x_i - b))$$

with $\chi(z)=1$ if $z > 0$,
 $\chi(z)=0$ if $z \le 0$

Problems:

- f(w,b) is integer valued \rightarrow not smooth, not even continuous
- Typically many solutions (and maybe none with *f(w,b)=0*).

Observation: The formulation has too many parameters!

We could equally well have described the separating line via

$$W'.x - 1 = 0.$$

What was the purpose of introducing *b*?

Answer:

We actually want a whole separating region, i.e., we'd like it if

- A point on the "near" side of the line has w'.x (1-c) < 0
- A point on the "far" side of the line has w'.x (1+c) > 0with c as large as possible. Equivalently: We want that
 - A point on the "near" side of the line has w.x b < -1
- A point on the "far" side of the line has w.x b > +1with ||w|| as small as possible. Wolfgang Bangerth

This leads to:

minimize_{w,b}
$$f(w,b) = ||w||^2$$

subject to $y_i(w \cdot x_i - b) \le -1$

How is this now?

- *f(w,b)* is smooth and convex in *w*
- The constraints are linear in w and b
- There may or may not be a solution, depending on where data points lie

Hard counting used for the formulation:

minimize_{w,b}
$$f(w,b) = ||w||^2$$

subject to $y_i(w \cdot x_i - b) \le -1$

But what do we do in this situation:

Here, no line parameterized by (*w*,*b*) can satisfy all constraints! Wolfgang Bangerth

Penalize how many points are on the wrong side and by how much:

Replace:

minimize_{w,b} $f(w,b) = ||w||^2$

subject to
$$y_i(w \cdot x_i - b) \leq -1$$

By:

minimize_{w,b}
$$f(w,b) = \frac{1}{N} \sum_{i} \max[0, 1 - y_i(w \cdot x_i - b)]$$

Make the gap big again:

minimize_{w,b}
$$f(w,b) = \left(\frac{1}{N}\sum_{i} \max[0, 1-y_i(w \cdot x_i-b)]\right) + \lambda ||w||^2$$

 λ states what we value more:

- A big gap (lambda large)
- Fewer points on the "wrong" side (lambda small)

Make the gap big again:

207

minimize_{w,b}
$$f(w,b) = \left(\frac{1}{N}\sum_{i} \max\left[0, 1 - y_{i}(w \cdot x_{i} - b)\right]\right) + \lambda ||w||^{2}$$

This formulation is non-smooth. It can be reformulated as a smooth, constrained problem using slack variables:

$$\begin{aligned} \text{minimize}_{w,b,s} \quad & f(w,b,s) = \frac{1}{N} \sum_{i} s_i + \lambda \|w\|^2 \\ & s_i \ge 0, \\ & s_i \ge 1 - y_i (w \cdot x_i - b) \end{aligned}$$

This is called a *linear-quadratic problem*. They are easy to solve! Wolfgang Bangerth

Nonlinear classifiers

In practice, data points can often not be separated by a straight line:

In such cases, one needs *nonlinear* classifiers. These are computed by *transforming* the data set $x \rightarrow g(x)$.