Part 7.9

An application: Support Vector Machines

Classification of data

Goal: "Supervised learning" - given two data sets of different objects, find a way to "classify" any new points by finding a "separator".

Classification of data

Issue 1: There may be many separators, even just among the linear ones.

Classification of data

Issue 2: There may be no linear classifier, even though there may be nonlinear ones.

Linearly Separable

Not Linearly Separable

Source: Medium.com

Classification of data

Issue 3: It may not be reasonable to find a perfect classifier.

Source: blog.statsbot.co

Classification of data

Approach: Classification is an optimization problem!

In the simplest case: We are looking for a straight line that minimizes the number of misclassifications.

Classification of data

Goal: We are looking for a straight line that minimizes the number of misclassifications.

Formulation: Assume we have data points $\left(x_{i}, y_{i}\right)$:

- x_{i} are the coordinates of the points.
- y_{i} is +1 if the point is part of data set 1
- y_{i} is -1 if the point is part of data set 2

Parameterization of the straight-line classifier:

- w is a direction vector
- b is a multiplier.

The straight line is given by $w \cdot x-b=0$.

Classification of data

Parameterization of the straight-line classifier:

- w is a direction vector
- b is a multiplier.

The straight line is given by $w \cdot x-b=0$.

Then:

- A point on the "near" side of the line has $w \cdot x-b<0$
- A point on the "far" side of the line has $w . x-b>0$

Want:

- Data set $1(y=+1)$ to be on the "near" side
- Data set $2(y=-1)$ to be on the "far" side

Hard counting

Have:

- A point on the "near" side of the line has $w . x-b<0$
- A point on the "far" side of the line has $w . x-b>0$

Want:

- Data set $1(y=+1)$ to be on the "near" side
- Data set $2(y=-1)$ to be on the "far" side

Then optimize by counting misclassified points:

$$
\operatorname{minimize}_{w, b} \quad f(w, b)=\sum_{i} \chi\left(y_{i}\left(w \cdot x_{i}-b\right)\right)
$$

with $\chi(z)=1$ if $z>0$, $\chi(z)=0 \quad$ if $z \leq 0$

Hard counting

Optimize by counting misclassified points:

$$
\begin{aligned}
& \text { minimize }_{w, b} \quad f(w, b)=\sum_{i} \chi\left(y_{i}\left(w \cdot x_{i}-b\right)\right) \\
& \text { with } \chi(z)=1 \quad \text { if } z>0 \\
& \quad \chi(z)=0 \\
& \text { if } z \leq 0
\end{aligned}
$$

Problems:

- $f(w, b)$ is integer valued \rightarrow not smooth, not even continuous
- Typically many solutions (and maybe none with $f(w, b)=0$).

Hard counting

Observation: The formulation has too many parameters!
We could equally well have described the separating line via

$$
w^{\prime} \cdot x-1=0
$$

What was the purpose of introducing b ?

Answer:

We actually want a whole separating region, i.e., we'd like it if

- A point on the "near" side of the line has $w^{\prime} . x-(1-c)<0$
- A point on the "far" side of the line has $w^{\prime} . x-(1+c)>0$
with c as large as possible. Equivalently: We want that
- A point on the "near" side of the line has $w . x-b<-1$
- A point on the "far" side of the line has $w \cdot x-b>+1$ with $\|w\|$ as small as possible.

Hard counting

This leads to:

$$
\begin{array}{ll}
\operatorname{minimize}_{w, b} & f(w, b)=\|w\|^{2} \\
\text { subject to } & y_{i}\left(w \cdot x_{i}-b\right) \leq-1
\end{array}
$$

How is this now?

- $f(w, b)$ is smooth and convex in w
- The constraints are linear in w and b
- There may or may not be a solution, depending on where data points lie

Soft counting

Hard counting used for the formulation:

$$
\begin{array}{ll}
\operatorname{minimize}_{w, b} & f(w, b)=\|w\|^{2} \\
\text { subject to } & y_{i}\left(w \cdot x_{i}-b\right) \leq-1
\end{array}
$$

But what do we do in this situation:

Here, no line parameterized by (w, b) can satisfy all constraints!

Soft counting

Penalize how many points are on the wrong side and by how much:

Replace:
$\operatorname{minimize}_{w, b} \quad f(w, b)=\|w\|^{2}$
subject to $\quad y_{i}\left(w \cdot x_{i}-b\right) \leq-1$

By:

$$
\operatorname{minimize}_{w, b} \quad f(w, b)=\frac{1}{N} \sum_{i} \max \left[0,1-y_{i}\left(w \cdot x_{i}-b\right)\right]
$$

Soft counting

Make the gap big again:

$\operatorname{minimize}_{w, b} \quad f(w, b)=\left(\frac{1}{N} \sum_{i} \max \left[0,1-y_{i}\left(w \cdot x_{i}-b\right)\right]\right)+\lambda\|w\|^{2}$
λ states what we value more:

- A big gap (lambda large)
- Fewer points on the "wrong"

Soft counting

Make the gap big again:

$\operatorname{minimize}_{w, b} \quad f(w, b)=\left(\frac{1}{N} \sum_{i} \max \left[0,1-y_{i}\left(w \cdot x_{i}-b\right)\right]\right)+\lambda\|w\|^{2}$

This formulation is non-smooth. It can be reformulated as a smooth, constrained problem using slack variables:

$$
\begin{array}{rl}
\operatorname{minimize}_{w, b, s} & f(w, b, s)=\frac{1}{N} \sum_{i} s_{i}+\lambda\|w\|^{2} \\
& s_{i} \geq 0, \\
& s_{i} \geq 1-y_{i}\left(w \cdot x_{i}-b\right)
\end{array}
$$

This is called a linear-quadratic problem. They are easy to solve!

Nonlinear classifiers

In practice, data points can often not be separated by a straight line:

In such cases, one needs nonlinear classifiers. These are computed by transforming the data set $x \rightarrow g(x)$.

