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Part 7.9

An application:
Support Vector Machines
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Classification of data

Goal: “Supervised learning” – given two data sets of different 
objects, find a way to “classify” any new points by finding a 
“separator”.

Source: Wikipedia
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Classification of data

Issue 1: There may be many separators, even just among the 
linear ones.

Source: https://towardsdatascience.com/support-vector-machine-vs-logistic-regression-94cc2975433f
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Classification of data

Issue 2: There may be no linear classifier, even though there may 
be nonlinear ones.

Source: Medium.com
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Classification of data

Issue 3: It may not be reasonable to find a perfect classifier.

Source: blog.statsbot.co
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Classification of data

Approach: Classification is an optimization problem!

In the simplest case: We are looking for a straight line that 
minimizes the number of misclassifications.
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Classification of data

Goal: We are looking for a straight line that minimizes the number 
of misclassifications.

Formulation: Assume we have data points  (x
i
, y

i
):

● x
i
 are the coordinates of the points.

● y
i
 is +1 if the point is part of data set 1

● y
i
 is  -1 if the point is part of data set 2

Parameterization of the straight-line classifier:
● w is a direction vector
● b is a multiplier.

The straight line is given by   w.x – b = 0.
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Classification of data

Parameterization of the straight-line classifier:
● w is a direction vector
● b is a multiplier.

The straight line is given by   w.x – b = 0.

Then:
● A point on the “near” side of the line has   w.x – b < 0
● A point on the “far” side of the line has      w.x – b > 0

Want: 
● Data set 1 (y=+1) to be on the “near” side
● Data set 2 (y=-1) to be on the “far” side
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Hard counting

Have:
● A point on the “near” side of the line has   w.x – b < 0
● A point on the “far” side of the line has      w.x – b > 0

Want: 
● Data set 1 (y=+1) to be on the “near” side
● Data set 2 (y=-1) to be on the “far” side

Then optimize by counting misclassified points:

minimizew , b    f (w ,b)  =  ∑i
χ ( y i(w⋅x i−b))

with χ (z )=1    if z>0,
        χ( z)=0    if z≤0
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Hard counting

Optimize by counting misclassified points:

Problems:
● f(w,b) is integer valued → not smooth, not even continuous
● Typically many solutions (and maybe none with f(w,b)=0).

minimizew , b    f (w ,b)  =  ∑i
χ ( y i(w⋅x i−b))

with χ (z )=1    if z>0,
        χ( z)=0    if z≤0
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Hard counting

Observation: The formulation has too many parameters!

We could equally well have described the separating line via

   w’.x – 1 = 0.

What was the purpose of introducing b?

Answer:

We actually want a whole separating region, i.e., we’d like it if
● A point on the “near” side of the line has   w’.x – (1-c) < 0
● A point on the “far” side of the line has      w’.x – (1+c) > 0

with c as large as possible. Equivalently: We want that
● A point on the “near” side of the line has   w.x – b < -1
● A point on the “far” side of the line has      w.x – b > +1

with ||w|| as small as possible.
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Hard counting

This leads to:

How is this now?
● f(w,b) is smooth and convex in w
● The constraints are linear in w and b
● There may or may not be a solution, depending on where data 

points lie

minimize w , b    f (w ,b)  =  ‖w‖
2

subject to       y i(w⋅x i−b)  ≤  −1
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Soft counting

Hard counting used for the formulation:

But what do we do in this situation:

Here, no line parameterized by (w,b) can satisfy all constraints!

minimizew , b    f (w ,b)  =  ‖w‖
2

subject to       y i(w⋅x i−b)  ≤  −1
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Soft counting

Penalize how many points are on the wrong side and by how 
much:

Replace:

By:

minimizew , b    f (w ,b)  =  ‖w‖
2

subject to       y i(w⋅x i−b)  ≤  −1

minimizew , b    f (w ,b)  =  
1
N
∑i

max [0, 1− y i(w⋅x i−b)]
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Soft counting

Make the gap big again:

λ states what we value more:
● A big gap (lambda large)
● Fewer points on the “wrong”

side (lambda small)

minimizew , b    f (w ,b)  =  (
1
N
∑i

max [0, 1− y i(w⋅x i−b) ])+λ‖w‖2
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Soft counting

Make the gap big again:

This formulation is non-smooth. It can be reformulated as a 
smooth, constrained problem using slack variables:

This is called a linear-quadratic problem. They are easy to solve!

minimizew , b    f (w ,b)  =  (
1
N
∑i

max [0, 1− y i(w⋅x i−b) ])+λ‖w‖2

minimizew , b , s    f (w , b , s)  =  
1
N
∑i

si+λ‖w‖
2

                         si≥0 ,
                         si≥1− y i(w⋅x i−b)
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Nonlinear classifiers

In practice, data points can often not be separated by a 
straight line:

In such cases, one needs nonlinear classifiers. These are 
computed by transforming the data set  x → g(x) .
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