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Part 7.5

Stochastic Gradient Descent
and Stochastic Newton
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Background

In many practical applications, the objective function is a 
large sum:

Issues and questions:

● Evaluating gradients/Hessians is expensive

● Do all of these f
i
 really provide complementary information?

● Can we exploit the sum structure somehow to make the 
algorithm cheaper?

f (x )  =  ∑i=1

N
f i(x )
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Stochastic gradient descent

Approach: Let’s use gradient descent (steepest descent), but 
instead of using the full gradient

Try to approximate it somehow in each step, using only a subset 
of the functions f

i
:

Note: In many practical applications, the step lengths are chosen 
a priori, based on knowledge of the application.

pk  =  −αk gk  =  −αk∇ f (xk )

pk  =  −αk
~gk
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Stochastic gradient descent

Idea 1: Use only one f
i
 at a time when evaluating the gradient: 

● In iteration 1, approximate

● In iteration 2, approximate

● … 

● After iteration N, start over:

g1  =  ∇ f ( x1)  ≈  ∇ f 1(x1)  =:  ~g1

g2  =  ∇ f (x2)  ≈  ∇ f 2(x2)  =:  ~g2

g N +1  =  ∇ f (x N+1)  ≈  ∇ f 1( xN+ 1)  =:  ~g N +1



185               Wolfgang Bangerth

Stochastic gradient descent

Idea 2: Use only one f
i
 at a time, randomly chosen: 

● In iteration 1, approximate

● In iteration 2, approximate

● … 

Here, r
i
 are randomly chosen numbers between 1 and N.

g1  =  ∇ f ( x1)  ≈  ∇ f r 1
(x1)  =:  ~g1

g2  =  ∇ f (x2)  ≈  ∇ f r2
( x2)  =:  ~g 2
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Stochastic gradient descent

Idea 3: Use a subset of the f
i
 at a time, randomly chosen: 

● In iteration 1, approximate

● In iteration 2, approximate

● … 

Here, S
i
 are randomly chosen subsets of {1...N} of a fixed size, 

but relatively small size M<<N.

g1  =  ∇ f ( x1)  ≈  ∑i∈S 1

∇ f i(x1)  =:  ~g1

g2  =  ∇ f (x2)  ≈  ∑i∈S2

∇ f i (x2)  = :  ~g 2
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Stochastic gradient descent

Analysis: Why might anything like this work at all?
● The approximate gradient direction in each step is wrong.
● The search direction might not even be a descent direction.
● The sum of each block of N partial gradients equals one exact 

gradient, so there does not seem to be any savings

But:
● On average, the search direction will be correct.

● In many practical cases, the functions f
i
 are not truly 

independent, but have redundancy.

Consequence: Far fewer than N steps are necessary compared 
to one exact gradient step!
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Stochastic Newton

Idea: The same principle can be applied for Newton’s method.

Either select a single f in each iteration and approximate

Or use a small subset:

gk  =  ∇ f (x k)  ≈  ∇ f r k( xk)  =:  ~g k
H k  =  ∇2 f (x k)  ≈  ∇2 f r k( xk )  =:  ~H k

gk  =  ∇ f (x k)  ≈  ∑i∈S k
∇ f i( xk )  =:  ~g k

H k  =  ∇2 f (x k)  ≈  ∑i∈S k
∇

2 f i( xk )  = :  ~H k
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Summary

Redundancy: In many practical cases, the functions f
i
 are not truly 

independent, but have redundancy.

Stochastic methods: 

● Exploit this by only evaluating a small subset of these functions 
in each iteration.

● Can be shown to converge under certain conditions

● Are often faster than the original method because
– they require vastly fewer function evaluations in each iteration
– even though they require more iterations
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