Part 7.5

Stochastic Gradient Descent
and Stochastic Newton



Background

In many practical applications, the objective function is a
large sum:

flx) =3 flx)

Issues and questions:
* Evaluating gradients/Hessians Is expensive

- Do all of these 7 really provide complementary information?

« Can we exploit the sum structure somehow to make the
algorithm cheaper?



Stochastic gradient descent

Approach: Let's use gradient descent (steepest descent), but
Instead of using the full gradient

Pr = —O 8 = _akvf(xk)

Try to approximate it somehow in each step, using only a subset
of the functions f

Py = —a. g,

Note: In many practical applications, the step lengths are chosen
a priori, based on knowledge of the application.



Stochastic gradient descent

Idea 1: Use only one f at a time when evaluating the gradient:

* In iteration 1, approximate

g1 — Vf(x1) ~ Vf1(x1) =: g

* In iteration 2, approximate

gy — Vf(xz) ~ sz(xz) =: &

o After iteration N, start over:

En+1 — Vf(xNH) ~ Vfl(xNH) = Sy



Stochastic gradient descent

Idea 2: Use only one f at a time, randomly chosen:

* In iteration 1, approximate

g1 — Vf(x1) ~ Vfrl(xl) =: g

* In iteration 2, approximate

8r — Vf(xz) ~ Vfrz('XZ) =: g,

Here, r are randomly chosen numbers between 1 and N.



Stochastic gradient descent

Idea 3: Use a subset of the f at a time, randomly chosen:

* In iteration 1, approximate

fol ZZSVf x1 =: g

* In iteration 2, approximate

= Vfix,) Zl Svf (x,) =1 &

Here, S are randomly chosen subsets of {1...N} of a fixed size,
but relatively small size M<<N.



Stochastic gradient descent

Analysis: Why might anything like this work at all?
* The approximate gradient direction in each step is wrong.
* The search direction might not even be a descent direction.

* The sum of each block of N partial gradients equals one exact
gradient, so there does not seem to be any savings

But:
* On average, the search direction will be correct.
- In many practical cases, the functions f are not truly
Independent, but have redundancy.

Consequence: Far fewer than N steps are necessary compared
to one exact gradient step!



Stochastic Newton

Idea: The same principle can be applied for Newton’s method.

Either select a single fin each iteration and approximate

= V/fx) ~ VS, (x) =g

Y

= Vifix) =~ szrk(xk> = o,

Or use a small subset:

Vf levf xk) = g
= V£ Z,Sfok) . H,



Summary

Redundancy: In many practical cases, the functions f are not truly
iIndependent, but have redundancy.

Stochastic methods:

* Exploit this by only evaluating a small subset of these functions
In each iteration.

e Can be shown to converge under certain conditions

* Are often faster than the original method because
— they require vastly fewer function evaluations in each iteration
— even though they require more iterations
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