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Part 6

Practical aspects of 
Newton methods

minimize   f x 
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What if the Hessian is not positive definite

At the solution, Hessian                    is positive definite. If f(x) is 
smooth, Hessian is positive definite near the optimum.

However, this needs not be so far away from the optimum:

∇2 f  x*

At initial point
the Hessian is indefinite:

H 0=∇
2 f x0=−0.022 0.134

0.134 −0.337
1=−0.386,    2=0.027

Quadratic model

has saddle point instead of 
minimum, Newton step is 
invalid!

mk  p= f kgk
T p

1
2
pT H k p

x0
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What if the Hessian is not positive definite

Background: Search direction only useful if it is a descent 
direction:

Trivially satisfied for Gradient method, for Newton's method 
there holds:

∇ f  xk 
T⋅pk0

pk=−H k
−1g k                gk

T
⋅pk=−gk

T H k
−1 gk    0

Search direction only a 
guaranteed descent direction, 
if H positive definite! 

Otherwise search direction is 
direction to saddle point of 
quadratic model and might be 
a direction of ascent!
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What if the Hessian is not positive definite

If Hessian is not positive definite, then modify the quadratic 
model:

● retain as much information as possible;
● model should be convex, so that we can seek a minimum.

The general strategy then is to replace the quadratic model by 
a positive definite one:

Here,      is a suitable modification of exact Hessian                  
so that        is positive definite.

Note: To retain ultimate quadratic convergence, we need that

mk  p  = f kgk
T p

1
2
pT H k p

H k H k=∇
2 f  xk

H k

H k  H k         as       xk x *
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What if the Hessian is not positive definite

The Levenberg-Marquardt modification:

Choose

so that the minimum of

lies at

mk  p  =  f kgk
T p

1
2
pT Hk p

H k  = H k I              −i

Note: Search direction is mixture 
between Newton direction and gradient.

Note: Close to the solution the Hessian 
must become positive definite and we 
can choose 

pk
N

pk
G

pk=− H k
−1gk  = −H k I 

−1gk

=0
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What if the Hessian is not positive definite

The eigenvalue modification strategy:

Since H is symmetric, it has a complete set of eigenvectors:

Therefore replace the quadratic model by a positive definite 
one:

with

Note: Only modify the Hessian in directions of negative 
curvature.

Note: Close to the solution, all eigenvalues become positive 
and we get again the original Newton matrix.

H k  =  ∇2 f  xk   =  ∑i
i v i v i

T

Hk  = ∑i
max { i , }  v i v i

T

mk  p  = f kgk
T p

1
2
pT H k p
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What if the Hessian is not positive definite

One problem with the modification

is that the search direction is given by

that is search direction has large component (of size 1/ε) in 
direction of modified curvatures!

An alternative that avoids this is to use

H k  = ∑i
max { i , }  v i v i

T

pk  =  −H̃ k
−1gk  =  −∑i

1
max {λi ,ϵ}

 v i (v i
T gk )

H k  = ∑i
∣i∣vi v i

T
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What if the Hessian is not positive definite

Theorem: Using full step length and either of the Hessian 
modifications

we have that if                 and if               then convergence 
happens with quadratic rate.

Proof: Since  f  is twice continuously differentiable, there is a k 
such that  x

k
  is close enough to x* that  H

k
  is positive definite. 

When that is the case, then

for all following iterations, providing the quadratic convergence 
rate of the full step Newton method.

H k  = ∑i
max { i , }  v i v i

T

xk x *

H k  = H k

H k  = H k I              −i

f ∈C2,1
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What if the Hessian is not positive definite

Example:

Blue regions indicate that 
Hessian 

is not positive definite.

f (x , y )  =  x4
−x2

+ y4
− y2

∇
2 f (x , y )  =  (12x2

−2 0
0 12y2

−2)

minima at   x=
±√2

2,
y=

±√(2)
2
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What if the Hessian is not positive definite

Starting point:

1.Negative gradient

2.Unmodified Hessian search 
direction

3.Search direction with eigenvalue 
modified Hessian (=10-6)

4.Search direction with shifted 
Hessian (=2.5; search direction 
only good by lucky choice of )

x0=0.1        y0=0.87

H 0  =  −1.88 0
0 7.08 

(1)(2)

(3)

(4)
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Truncated Newton methods

In any Newton or Trust Region method, we have to solve an 
equation of the sort

or potentially with a modified Hessian:

Oftentimes, computing the Hessian is more expensive than 
inverting it, but not always.

Question: Could we possibly get away with only approximately 
solving this problem, i.e. finding

with suitable conditions on how accurate the approximation is?

H k pk  = −gk

H k pk  = −gk

pk  ≈ −H k
−1gk
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Truncated Newton methods

Example: Since the Hessian (or a modified version) is a 
positive definite matrix, we may want to solve

using an iterative method such as the Conjugate Gradient 
method, Gauss-Seidel, Richardson iteration, SSOR, etc etc.

While all these methods eventually converge to the exact 
Newton direction, we may want to truncate this iteration at one 
point.

Question: When can we terminate this iteration?

H k pk  = −gk
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Truncated Newton methods

Theorem 1: Let       be an approximation to the Newton 
direction defined by

and let there be a sequence of numbers                         so that

Then if                  then the full step Newton method converges 
with linear order.

H k pk  = −gk

∥gkH k pk∥

∥gk∥
≤k1

pk

{ k},k1

xk→ x *
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Truncated Newton methods

Theorem 2: Let       be an approximation to the Newton 
direction defined by

and let there be a sequence of numbers                                     
 so that

Then if                  then the full step Newton method converges 
with superlinear order.

H k pk  = −gk

∥gkH k pk∥

∥gk∥
≤k1

p̂k

{ k},k1, k0

xk x *
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Truncated Newton methods

Theorem 3: Let       be an approximation to the Newton 
direction defined by

and let there be a sequence of numbers                                     
 so that

Then if                  then the full step Newton method converges 
with quadratic order.

H k pk  = −gk

∥gkH k pk∥

∥gk∥
≤k1

{ k},k1, k=O ∥gk∥

pk

xk x *



161               Wolfgang Bangerth

Part 7

Quasi-Newton update formulas

Bk1=Bk...
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Quasi-Newton update formulas

Observation 1: 

Computing the exact Hessian to determine the Newton search 
direction

is expensive, and sometimes impossible. 

It at least doubles the effort per iteration because we need not 
only the first but also the second derivative of f(x).

It also requires us to solve a linear system for the search 
direction.

H k pk  = −gk
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Quasi-Newton update formulas

Observation 2: 

We know that we can get superlinear convergence if we 
choose the update       using 

instead of

under certain conditions on the matrix B
k
.

Bk pk  = −gk

pk

H k pk  = −gk
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Quasi-Newton update formulas

Question: 

Maybe it is possible to find matrices  B
k  

for which:

● Computing  B
k
  is cheap and requires no additional 

function evaluations

● Solving

for  p
k
  is cheap

● The resulting iteration still converges with superlinear 
order.

Bk pk  = −gk
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Motivation of ideas

Consider a function q(x).

The Fundamental Theorem of Calculus tells us that

for some

Let's apply this to                                                           :

Let us denote                                                       then 
computing the search direction reads

with     the Hessian at some (unknown) intermediate point.

q (z)−q(x )=∇ q (ξ)T  (z−x)

=xt  z−x ,  t∈[0,1 ]

q (x)=∇ f (x ) ,   z=xk ,  x=xk−1

∇ f xk −∇ f xk−1=gk−gk−1=∇
2 f x k−t  pkxk− xk−1

                                = H xk−xk−1

yk−1=gk−gk−1 ,  sk−1=xk−xk−1

H sk−1= yk−1

H
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Motivation of ideas

Let us denote                                                       

Then computing the search direction reads

Goal 1: We don’t know what       is (it is the Hessian at some 
intermediate point). But we know s and y. Find a way to 
estimate      .

Goal 2: Use this approximation to cheaply compute the next 
search direction!

yk−1=gk−gk−1     (difference in gradients)
sk−1= xk−xk−1      (search direction)

H sk−1= yk−1

H

H
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Motivation of ideas

Requirements:

● We seek a matrix  B
k+1

  so that

● The “secant condition” holds:

● B
k+1

 is symmetric

● B
k+1

  is positive definite

● B
k+1

 changes minimally from B
k

● The update equation is easy to solve for

Bk1 sk= yk

pk1  =  −B k1
−1 g k1
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Davidon-Fletcher-Powell

The DFP update formula:

Given  B
k
 define B

k+1
  by

This satisfies the conditions:

● It is symmetric and positive definite

● It is among all possible matrices the one that minimizes

● It satisfies the secant condition

Bk +1=( I−γ yk sk
T
)B k ( I−γ sk yk

T
)+γ yk yk

T

   γk=
1

yk
T sk

                                           

∥ H−1/2
Bk1−Bk  H

−1/2
∥F

Bk1 sk= yk
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Broyden-Fletcher-Goldfarb-Shanno

The BFGS update formula:

Given  B
k
 define B

k+1
  by

This satisfies the conditions:

● It is symmetric and positive definite

● It is among all possible matrices the one that minimizes

● It satisfies the secant condition

Bk1=Bk−
Bk sk sK

T Bk
sk
T Bk sK


y k y k

T

yk
T sk

∥ H 1/2
Bk1

−1
−Bk

−1
 H 1/2

∥F

Bk1 sk= yk

Bk1=Bk−
Bk sk sK

T Bk
sk
T Bk sK


y k y k

T

yk
T sk
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Broyden-Fletcher-Goldfarb-Shanno

So far:

● We seek a matrix  B
k+1

  so that

● The secant condition holds:

● B
k+1

 is symmetric

● B
k+1

  is positive definite

● B
k+1

 changes minimally from B
k 
 in some sense

● The update equation is easy to solve for

Bk1 sk= yk

pk  = −Bk
−1 gk
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DFP and BFGS

Now a miracle happens:

For the DFP formula:

For the BFGS formula:

This makes computing the next update very cheap!

Bk1= I−k y k sk
T
 Bk  I−k sk yk

T
k yk yk

T ,        k=
1

yk
T sk

Bk1
−1

=Bk
−1
−
Bk
−1 yk yk

T Bk
−1

yk
T Bk

−1 yk

sk sk

T

y k
T sk

                                           

Bk1=Bk−
Bk sk sK

T Bk
sk
T Bk sk


y k y k

T

yk
T sk

                                                

Bk1
−1

= I−k sk yk
T
 Bk

−1
 I−k yk sk

T
k sk sk

T
,         k=

1

y k
T sk
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DFP + BFGS = Broyden class

What if we mixed:

This is called the “Broyden class” of update formulas. 

The class of Broyden methods with                       is called the 
“restricted Broyden class”.

B k1
DFP

= I−k yk sk
T
Bk  I−k sk y k

T
 k yk yk

T ,        k=
1

yk
T sk

                                           

Bk1
BFGS

=Bk−
Bk sk sK

T Bk
sk
T Bk sk


yk yk

T

yk
T sk

                                                

Bk1=k Bk1
DFP

1−k Bk
BFGS

0≤k≤1
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DFP + BFGS = Broyden class

Theorem: Let            , let      be a starting point so that the set

is convex. Let        be any symmetric positive definite matrix. 
Then

for any sequence            generated by a quasi-Newton method 
that uses a Hessian update formula by any member of the 
restricted Broyden class with the exception of the DFP method  
              .

f ∈C2 x0

={x : f x≤f x0}

B0

xk x *

xk

k=1
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DFP + BFGS = Broyden class

Theorem: Let               .  Assume the BFGS updates 
converge, then

with superlinear order.

f ∈C2,1

xk x *
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Practical BFGS: Starting matrix

Question: How do we choose the initial matrix                   ?

Observation 1: The theorem stated that we will eventually 
converge for any symmetric, positive definite starting matrix.

In particular, we could choose a multiple of the identity matrix    
                   

Observation 2: If        is too small, then 

is too large, and we need many trials in line search to find a 
suitable step length.

Observation 3: The matrices B should approximate the 
Hessian matrix, so they at least need to have the same 
physical units.

B0  or B0
−1

B0= I ,    B0
−1
=

1

I



p0=−B0
−1g0=−

1

g0
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Practical BFGS: Starting matrix

Practical approaches:

Strategy 1: Compute the first gradient g
0
, choose a “typical” 

step length     , then set

so that we get

Strategy 2: Approximate the true Hessian somehow. For 
example, do one step with the heuristic above, choose 

and start over again.



B0=
∥g0∥


I ,    B0

−1
=



∥g0∥
I

p0=−B0
−1g0=−

g0

∥g0∥

B0=
y1
T y1

y1
T s1

I ,    B0
−1
=
y1
T s1

y1
T y1

I
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Practical BFGS: Limited Memory BFGS (LM-BFGS)

Observation: The matrices

are full, even if the true Hessian is sparse.

Consequence: 

We need to compute all n2 entries, and store them.

Bk1=Bk−
Bk sk sK

T Bk
sk
T Bk sk


y k y k

T

yk
T sk

                                                

Bk1
−1

= I−k sk yk
T
 Bk

−1
 I−k yk sk

T
k sk sk

T
,         k=

1

y k
T sk
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Practical BFGS: Limited Memory BFGS (LM-BFGS)

Solution: Note that in the kth iteration, we can write

We can expand this recursively:

Consequence: We need only store kn entries.

Bk
−1
=V k−1

T Bk−1
−1 V k−1k−1 sk−1 sk−1

T                      

                    with k−1=
1

yk−1
T sk−1

,V k−1= I−k−1 y k−1 sk−1
T



Bk
−1
=V k−1

T Bk−1
−1 V k−1k−1 sk−1 sk−1

T                                                      

       =V k−1
T V k−2

T Bk−2
−1 V k−2V k−1

             k−2V k−1
T sk−1 sk−2

T V k−1k−1 sk−1 sk−1
T

       =...
       =[V k−1

T
⋅⋅⋅V 1

T ]B0
−1

[V 1⋅⋅⋅V k−1 ]

             ∑ j=1

k
k− j{[V k−1

T
⋅⋅⋅V k− j1

T ] sk− j sk− j
T

[V k− j1⋅⋅⋅V k−1 ]}
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Practical BFGS: Limited Memory BFGS (LM-BFGS)

Problem: kn elements may still be quite a lot if we need many 
iterations. Forming the product with this matrix will then also be 
expensive.

Solution: Limit memory and CPU time by only storing the last 
m updates:

Consequence: We need only store mn entries and 
multiplication with this matrix requires 2mn+O(m3) operations.

Bk
−1
=[V k−1

T
⋅⋅⋅V k−m

T ]B0,k
−1

[V k−m⋅⋅⋅V k−1 ]                                 

             ∑ j=1

m
k− j{[V k−1

T
⋅⋅⋅V k− j1

T ] sk− j sk− j
T

[V k− j1⋅⋅⋅V k−1 ]}
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Practical BFGS: Limited Memory BFGS (LM-BFGS)

In practice: 

● Initial matrix can be chosen independently in each 
iteration; typical approach is again

● Typical values for m are between 3 and 30.

Bk
−1
=[V k−1

T
⋅⋅⋅V k−m

T ]B0,k
−1

[V k−m⋅⋅⋅V k−1 ]                                 

             ∑ j=1

m
k− j{[V k−1

T
⋅⋅⋅V k− j1

T ] sk− j sk− j
T

[V k− j1⋅⋅⋅V k−1 ]}

B0,k
−1
=
y k−1
T sk−1

yk−1
T yk−1

I
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Parts 1-7

Summary of methods for 
smooth unconstrained 

problems

minimize   f x 
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Summary

● Newton's method is unbeatable with regard to speed of 
convergence

● However: To converge, one needs
- a line search method + conditions like the Wolfe 
conditions
- Hessian matrix modification if it is not positive definite

● Newton's method can be expensive or infeasible if
- computing Hessians is complicated
- the number of variables is large

● Quasi-Newton methods, e.g. LM-BFGS, help:
- only need first derivatives
- need little memory and no explicit matrix inversions
- but converge slower (at best superlinear)

● Trust region methods are an alternative to Newton's method 
but share the same drawbacks
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