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Part 4

Smooth unconstrained 
problems:

Line search algorithms

minimize   f x 
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Smooth problems: Characterization of Optima

Problem: find solution       of

A strict local minimum        must satisfy two conditions:

First order necessary condition: gradient must vanish:

Sufficient condition for a strict minimum:

x *

minimize x  f  x 

x *

∇ f  x*=0

spectrum ∇2 f x *  0
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Basic Algorithm for Smooth Unconstrained Problems

Basic idea for iterative solution                of the problem

Generate a sequence       by

  1.  finding a search direction
  2.  choosing a step length

Then compute the update

Iterate until we are satisfied.

minimize  f x 

x k1=x kk pk

k

pk

x k
x k

x k1

pk

x k x *
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Step 1: Choose search direction

Conditions for a useful search direction:

pk⋅∇ f xk ≤0

Minimization function should 
be decreased in this 
direction:

Search direction should lead 
to the minimum as straight 
as possible

∇ f  xk 

−∇ f x k 
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Step 1: Choose search direction

Basic assumption: We can usually only expect to know the 
minimization function              locally at        .
That means that we can only evaluate

∇ f  xk =gkf xk 

x k

∇2 f  xk =H k ...

For a search direction, try to model       in the vicinity of        
by a Taylor series:

f xk 

f x k

f x k pk   ≈  f x k 

                                         gk
T pk

                                          
1
2
pk
T H k pk  
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Step 1: Choose search direction

Goal:  Approximate           in the vicinity of       by a model

with ∇ f  xk =gkf xk =f k

x k

∇2 f  xk =H k ...

Then: Choose that direction       that minimizes the model

f ⋅

pk

f xkp  ≈  mk p   = f k   gk
T p    

1
2
pT H k p  

mk  p
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f xkp ≈ f k  gk
T p = mk  p

pk =− gk

pk=−∇ f xk 

Method 1 (Gradient method, Method of Steepest Descent):

search direction is minimizing direction of linear model

Step 1: Choose search direction
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mk p  = f k  gk
T p 

1
2
pT H k p

∂mk p

∂ p
 = gkH k p=0            pk = −H k

−1 gk

Method 2 (Newton's method):

search direction is to the minimum of the quadratic model

Minimum is characterized by

Step 1: Choose search direction
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Method 2 (Newton's method)  --  alternative viewpoint:

Newton step is also generated when applying Newton's method 

for the root-finding problem (F(x)=0) to the necessary optimality 

condition:

Linearize necessary condition around  x
k
:

0  =  ∇ f x *  = ∇ f  xk   ∇ 2 f x k  x *−x k   ...
                                    gk             H k          pk

pk  = −H k
−1 gk

Step 1: Choose search direction

∇ f  x*=0
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Step 1: Choose search direction

mk p = f k  gk
T p 

1
2
pT H k p

1
6 [ ∂

3 f
∂ x l∂ xm∂ xn ]k p l pm pn

∂mk p

∂ p
 = gkH k p

1
2 [ ∂

3 f
∂ x l∂ xm∂ xn ]k p l pm=0            pk = ? ??

Method 3 (A third order method):

The search direction is to the minimum of the cubic model

Minimum is characterized by the quadratic equation

But: There is no practical way to compute the solution of this 

equation for problems with more than one variable.
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Step 2: Determination of Step Length

k   =  arg min


  f xk pk 

Once the search direction is known, compute the update by 
choosing a step length       and setk

x k1   =   xkk pk

Determine the step length by solving the 
1-d minimization problem (line search):

For Newton's method: If the quadratic 
model is good, then step is good, then 
take full step with k=1
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Convergence: Gradient method

∥x k− x *∥  ≤  C∥x k−1−x *∥

Gradient method converges linearly, i.e.

Gain is a fixed factor  C<1
Convergence can be very slow if  C  close to 1.

Example: If  f(x)=xTHx, with H positive definite and for 
optimal line search, then

C≈
n−1

n1

                {i}=spectrum H

x 2 y2      C=0 x 25y2      C≈0.6
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Convergence: Newton's method

Newton's method converges quadratically, i.e.

Optimal convergence order only if step length is 1, 
otherwise slower convergence (step length is 1 if quadratic 
model valid!)

If quadratic convergence: accelerating progress as iterations 
proceed.

Size of  C:

C measures size of nonlinearity beyond quadratic part.

C  ∼  supx , y
∥∇2 f (x*)−1  (∇ 2 f (x)−∇ 2 f ( y ))∥

∥x− y∥

∥x k− x *∥  ≤  C∥x k−1−x *∥2
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Example 1: Gradient method

f x , y =−x32x2 y2

Local minimum at x=y=0,
saddle point at x=4/3, y=0
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Example 1: Gradient method

Convergence of gradient method:
Converges quite fast, with linear rate
Mean value of convergence constant  C :  0.28
At (x=0,y=0), there holds

∇
2 f 0,0~{1=4,2=2}             C≈

4−2
42

≈0.33

∥x k− x *∥
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Example 1: Newton's method

f x , y =−x32x2 y2

Local minimum at x=y=0,
saddle point at x=4/3, y=0
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Example 1: Newton's method

Convergence of Newton's method:
Converges very fast, with quadratic rate
Mean value of convergence constant  C :  0.15

Theoretical estimate yields  C=0.5

∥x k− x *∥ ≤ C∥x k−1− x*∥2

∥x k− x *∥
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Example 1: Comparison between methods

Newton's method much faster than gradient method

Newton's method superior for high accuracy due to higher 
order of convergence

Gradient method simple but converges in a reasonable 
number of iterations as well

∥x k− x *∥

k
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Example 2: Gradient method

(Banana valley function)

Global minimum at x=y=0

f x , y =
4x− y2


2


1
100 

1
100

y2
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Example 2: Gradient method

Convergence of gradient method:
Needs almost 35,000 iterations to come closer than 0.1 to 
the solution!
Mean value of convergence constant  C :  0.99995 
At (x=4,y=2), there holds

∇
2 f 4,2~{1=0.1,2=268}             C≈

268−0.1
2680.01

≈0.9993

∥x k− x *∥
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Example 2: Newton's method

(Banana valley function)

Global minimum at x=y=0

f x , y =
4x− y2


2


1
100 

1
100

y2
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Example 2: Newton's method

Convergence of Newton's method:
Less than 25 iterations for an accuracy of better than 10-7!

Convergence roughly linear for first 15-20 iterations since 
step length

Convergence roughly quadratic for last iterations with step 
length 

k≠1

∥x k− x *∥

k≈1
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Example 2: Comparison between methods

Newton's method much faster than gradient method

Newton's method superior for high accuracy (i.e. in the 
vicinity of the solution) due to higher order of convergence

Gradient method converges too slowly for practical use

∥x k− x *∥
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Practical line search strategies

Ideally: Use an exact step length determination (line search) 
based on

This is a 1d minimization problem for  α, solvable via Newton's 
method/bisection search/etc.

However: Expensive, may require many function/gradient 
evaluations.

Instead: Find practical criteria that guarantee convergence but 
need less function evaluations!

k   =  arg min


 f xk pk 
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Practical line search strategies

Strategy: Find practical criteria that guarantee convergence 
but need less evaluations.

Rationale: 

● Near the optimum, quadratic approximation of f is valid
→ take full steps (step length 1) there

● Line search only necessary far away from the solution

● If close to solution, need to try α=1 first 

Consequence:

● Near solution, quadratic convergence of Newton's method 
is retained

● Far away, convergence is slower in any case.
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Practical line search strategies

Practical strategy: Use an inexact line search that:
● finds a reasonable approximation to the exact step length
● chosen step length guarantees a sufficient decrease in f(x);
● chooses full step length 1 for Newton's method whenever 

possible.

f x , y =x 4− x2 y4− y2
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Practical line search strategies

Wolfe condition 1 (“sufficient decrease” condition): 
Require step lengths to produce a sufficient decrease

f xk pk    ≤   f xk     c1 [ ∂ f x k pk ∂  ]
=0

                            =  f k    c1∇ f k⋅pk

Necessary:

Typical values:

i.e.: only very small 
decrease mandated

0c11

c1=10−4



f xk pk 
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Practical line search strategies

∇ f xk pk ⋅pk  =  [∂ f xk pk ∂ ]
= k

  ≥   c2[∂ f xk pk ∂ ]
=0

 =  c2∇ f k⋅pk

Necessary:

Typical:

Rationale: Exclude too 
small step lengths

0c1c21

c2=0.9



f xk pk 

Wolfe condition 2 (“curvature” condition): 
Require step lengths where f has shown sufficient 
curvature upwards
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Practical line search strategies

Wolfe conditions 

Conditions 1 and 2 usually yield reasonable ranges for the 
step lengths, but do not guarantee optimal ones



f xk pk 
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Practical line search strategies - Alternatives



f xk pk 


f xk pk 



f xk pk 

Strict Wolfe conditions:

∣[∂ f xk pk∂ ]
=k

∣  ≤   c2∣[ ∂ f xk pk ∂ ]
=0
∣

Goldstein conditions:

f xk pk    ≥   f xk     1−c1 [∂ f xk pk ∂  ]
=0
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Practical line search strategies

Conditions like the ones above tell us whether a given step 
length is acceptable or not.

In practice, don't try too many step lengths – checking the 
conditions involves function evaluations of  f(x).

Typical strategy (“Backtracking line search”):
1. Start with a trial step length 
    (for Newton's method:         )
2. Verify acceptance conditions for this
3. If yes: 
4. If no:                         and go to 2.

Note: A typical reduction factor is 

t=

=1
t

k=t

t=c t ,  c1

c=
1
2
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Practical line search strategies

An alternative strategy (“Interpolating line search”):

●   Start with              ,  set 

●   Verify acceptance conditions for

●   If yes: 

●   If no: 
- let 

- from evaluating the sufficient decrease condition

  we already know                     ,
  and

- if         then choose           as minimizer of the quadratic
  function that interpolates 

- if         then choose           as the minimizer of the cubic
  function that interpolates

αt
(0)
=ᾱ=1

t
i 

k=t
i

k = f x k pk 

k 0= f x k  k ' 0=∇ f k⋅pk=g k⋅pk

f xkt
i  pk   ≤  f k    c1t

 i
∇ f k⋅pk

k t
i
= f  xkt

i pk 

i=0

i=0 t
i1

k 0 , ' k 0 ,k t
i


i0 t
i1

k 0 , ' k 0 ,k t
i
 ,k t

i−1

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Practical line search strategies

An alternative strategy (“Interpolating line search”):

Step 1: Quadratic interpolation

αt
(0)
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Practical line search strategies

An alternative strategy (“Interpolating line search”):

Step 2 and following: Cubic interpolation

αt
(0)

αt
(1)
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