Part 4

Smooth unconstrained
problems:
Line search algorithms

minimize f(x)



Smooth problems: Characterization of Optima

Problem: find solution x* of

minimize, f(x)

A strict local minimum x* must satisfy two conditions:

First order necessary condition: gradient must vanish:
V f(x*)=0
Sufficient condition for a strict minimum:

spectrum (V° f (x*)) > 0



Basic Algorithm for Smooth Unconstrained Problems

Basic idea for iterative solution x, —x* of the problem
minimize f(x)

Generate a sequence X, by

1. finding a search directionp,
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2. choosing a step length \
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Then compute the update
Xir1=X )T 04 Dy

lterate until we are satisfied.



Step 1: Choose search direction

Conditions for a useful search direction:

Minimization function should
be decreased in this
direction:

pk'v f(x,)<0
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Search direction should lead
to the minimum as straight
as possible




Step 1: Choose search direction

Basic assumption: We can usually only expect to know the
minimization function f(x,) locally at x,
That means that we can only evaluate

f(x,) V f(x)=g, V*f(x)=H,

For a search direction, try to model | in the vicinity of X,
by a Taylor series:

f(xtp) ~ [(x) Mgg
T 9Py N
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+ Ep;CHkpk + ...



Step 1: Choose search direction

Goal: Approximate f() In the vicinity of x, by a model

1
f(x,+p) ~ m(p) = f + gp + EpTHkp + ...

with f(Xk):fk \% f(xk)=gk % f(xk):Hk

Then: Choose that direction p, that minimizes the model mk(p)
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Step 1: Choose search direction

Method 1 (Gradient method, Method of Steepest Descent):.

search direction is minimizing direction of linear model
T
f(x,tp) ~ fi + g.p = m(p)

Pk = — Gk
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Step 1: Choose search direction

Method 2 (Newton's method):

search direction is to the minimum of the1 quadratic model
T T
my(p) = fx+ gp + -p Hyp

2
Minimum is characterized by
om,(p)
0p

=g +tH,p=0 - p, = _H:gk
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Step 1: Choose search direction

Method 2 (Newton's method) -- alternative viewpoint:

Newton step is also generated when applying Newton's method
for the root-finding problem (F(x)=0) to the necessary optimality
condition:

V f(x*)=0

Linearize necessary condition around X, :

0= Vf(x* = IVf(Xk)+IV2f<Xk)(IX*—Xk)-F...
gy | - H, Hka |

Py — _H:gk



Step 1: Choose search direction

Method 3 (A third order method):

The search direction is to the minimum of the cubic model
r 1 1 1| of
m = f + + —p H p+—
(p) = fi+ gp + 5P Hipte Sx0x ox_ |, P 1PnP:

Minimum Is characterized by the quadratic equation

om,(p) 1. 0’ f
= g+ H pt+s =0 = 277
@p gk kp 2.8xlaxmaxn.kplpm - pk

But: There is no practical way to compute the solution of this

equation for problems with more than one variable.



Step 2: Determination of Step Length

Once the search direction is known, compute the update by
choosing a step length ®, and set

Xki1 — Xt Py

;—”J_._—._\_‘_‘_‘—\"“-\
Determine the step length by solving the N
1-d minimization problem (line search): @

o, = argmin_ f(x,+ap,)

For Newton's method: If the quadratic
model is good, then step is good, then
take full step with «,=1




Convergence: Gradient method

Gradient method converges linearly, i.e.
Ix,—x*| < Clx,_,—x*¥

Gain is a fixed factor C<1
Convergence can be very slow if C close to 1.

Example: If f(x)=x"Hx, with H positive definite and for
optimal line search, then N 2\
n 1

]

(\.| =spectrum H

x*+y*> - C=0 x*+5y° = C~0.6



Convergence: Newton's method

Newton's method converges quadratically, i.e.

||Xk_X *H < C”Xk—l_x *HZ

Optimal convergence order only if step length is 1,
otherwise slower convergence (step length is 1 if quadratic
model valid!)

If quadratic convergence: accelerating progress as iterations
proceed.

Size of C:
[V2r ) (V2 F ()= V2 ()|

Ix=yl
C measures size of nonlinearity beyond quadratic part.

C ~ sup, ,



Example 1: Gradient method

f(x,y)=—x’+2x°+y"’

Local minimum at x=y=0,
saddle point at x=4/3, y=0
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Example 1: Gradient method

1

0.1}
0,01 |
%= x*|

0,001 |
0,000 |
1e-05 |
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1e-07
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Convergence of gradient method:
Converges quite fast, with /inear rate

Mean value of convergence constant C: 0.28
At (x=0,y=0), there holds

V2 £(0,0)~\,=4,,=2] CN%NO.BS



Example 1: Newton's method

f(x,y)=—x’+2x°+y"’

Local minimum at x=y=0,
saddle point at x=4/3, y=0
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Example 1: Newton's method

1

0.1 F
0,01 b
Jxi=x¥]
0,001 f
0,0001 F

le-0b F

1e-06 |

1e-07

0 2 4 = 8 10 12

Convergence of Newton's method:
Converges very fast, with quadratic rate
Mean value of convergence constant C: 0.15

ka_X*H = CHXk—l_X*HZ

Theoretical estimate yields C=0.5



Example 1: Comparison between methods

Gradient method —s— |

Hewton's method
0,01 F

%= x|
0,0001 |

le-06 F

le-05 |

le-10
0 2 4 = 8 10 12

k

Newton's method much faster than gradient method

Newton's method superior for high accuracy due to higher
order of convergence

Gradient method simple but converges in a reasonable
number of iterations as well
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Example 2: Gradient method
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Example 2: Gradient method

10

Jx=x¥]

0.1 F

0,01

0 ROOO 10000 15000 20000 25000 20000 Z5000

Convergence of gradient method:

Needs almost 35,000 iterations to come closer than 0.1 to
the solution!

Mean value of convergence constant C . 0.99995
At (x=4,y=2), there holds

2 268—-0.1
4,2)~1\,=0.1,\,=268 C~ ~(.9993
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Example 2: Newton's method
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Example 2: Newton's method

10 T

1k
fx=xx] 4

0,01 F
0,001 F
0.,0001 F
1e-05
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1e-07 F

1e-08
0 a 10 15 20 20

Convergence of Newton's method:
Less than 25 iterations for an accuracy of better than 107!

Convergence roughly linear for first 15-20 iterations since
step length ,#1

Convergence roughly quadratic for last iterations with step
length «,~1



Example 2: Comparison between methods

Gradient method —— |
Mewton's method

10

%= x|

01 F

|:]+|:|1 2 3 2 PR 2 2 3 2 2
1 10 100 1000 10000 100000
Newton's method much faster than gradient method

Newton's method superior for high accuracy (i.e. in the
vicinity of the solution) due to higher order of convergence

Gradient method converges too slowly for practical use



Practical line search strategies

Ideally: Use an exact step length determination (/ine search)
based on

®, = argmin f(x,+ap,)

This is a 1d minimization problem for a, solvable via Newton's
method/bisection search/etc.

However: Expensive, may require many function/gradient
evaluations.

Instead: Find practical criteria that guarantee convergence but
need less function evaluations!



Practical line search strategies

Strategy: Find practical criteria that guarantee convergence
but need less evaluations.

Rationale:

* Near the optimum, quadratic approximation of f is valid
- take full steps (step length 1) there

* Line search only necessary far away from the solution

* If close to solution, need to try a=1 first

Consequence:

* Near solution, quadratic convergence of Newton's method
IS retained

* Far away, convergence is slower in any case.



Practical line search strategies

Practical strategy: Use an inexact line search that:
* finds a reasonable approximation to the exact step length
* chosen step length guarantees a sufficient decrease in f(x),
* chooses full step length 1 for Newton's method whenever
possible.
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Practical line search strategies

Wolfe condition 1 (“sufficient decrease” condition):
Require step lengths to produce a sufficient decrease

O f(x,+ap,)
O X
= f, + C10(V fi Dy

f(xy+ap) < f(x) + o

x=0

f(x,+op,) Necessary:
0<c,<1
/\ Typical values:
\_/ ¢,=10""

l.e.: only very small
decrease mandated




Practical line search strategies

Wolfe condition 2 (“curvature” condition):
Require step lengths where f has shown sufficient
curvature upwards

V f(xg+apy)py = ° f(xg+0(pk) = Cz[a [x+opy = ¢,V i D
X o= 80( x=0
f(x+op,) Necessary:
0<c,<c,<1
Typical:
¢,=0.9

Rationale: Exclude too
small step lengths




Practical line search strategies

Wolfe conditions

Conditions 1 and 2 usually yield reasonable ranges for the
step lengths, but do not guarantee optimal ones

f (xy+xpy)




Practical line search strategies - Alternatives

Strict Wolfe conditions:
of (X, +apy) of (x,+opy)
80( =0y - 2 80( x=0
f (xtap /

Goldstein conditions:

0 f (x,+ap,)
60( x=0

fxitapy) = fx) + (1-¢)

f (xitocpy)




Practical line search strategies

Conditions like the ones above tell us whether a given step
length is acceptable or not.

In practice, don't try too many step lengths — checking the
conditions involves function evaluations of f(x).

Typical strategy (“Backtracking line search”):

1. Start with a trial step length «=a
(for Newton's method: a=1)

2. Verify acceptance conditions for this &,
3. Ifyes: «=q,
4.1fno: «=ca, c<l and go to 2.

. i _ 1
Note: A typical reduction factor is c=7




Practical line search strategies

An alternative strategy (“Interpolating line search”):

Start with «’'=a=1, set =0
Verify acceptance conditions for o’

Ifyes: o=ao

t

If no:

-let ¢ (x)=f(x,+xp,)

- from evaluating the sufficient decrease condition
f(xi+o'p) =< fi + i’V fiepi

we already know ¢,00)=f(x,), ¢/(0)=V f, p,=g, D,
and ¢,(o)=f(x,+op,)
(i+1)

- If i=0 then choose « = as minimizer of the quadratic
function that interpolates  ¢,(0),¢",(0),¢,(«")

(i+1)

-if i>0 then choose «, ' asthe minimlzer of the cubic
function that interpolates ¢,(0),¢",(0),d, (e}, d, (/")



Practical line search strategies

An alternative strategy (“Interpolating line search”):

Step 1: Quadratic interpolation




Practical line search strategies

An alternative strategy (“Interpolating line search”):

Step 2 and following: Cubic interpolation
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