Part 4

Smooth unconstrained problems: Line search algorithms

minimize $f(x)$

Smooth problems: Characterization of Optima

Problem: find solution x^{*} of

$$
\operatorname{minimize}_{x} f(x)
$$

A strict local minimum x^{*} must satisfy two conditions:
First order necessary condition: gradient must vanish:

$$
\nabla f\left(x^{*}\right)=0
$$

Sufficient condition for a strict minimum:

$$
\operatorname{spectrum}\left(\nabla^{2} f\left(x^{*}\right)\right)>0
$$

Basic Algorithm for Smooth Unconstrained Problems

Basic idea for iterative solution $x_{k} \rightarrow x^{*}$ of the problem

$$
\text { minimize } f(x)
$$

Generate a sequence x_{k} by

1. finding a search direction p_{k}
2. choosing a step length α_{k}

Then compute the update

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k}
$$

Iterate until we are satisfied.

Step 1: Choose search direction

Conditions for a useful search direction:
Minimization function should be decreased in this direction:

$$
p_{k} \cdot \nabla f\left(x_{k}\right) \leq 0
$$

Search direction should lead to the minimum as straight as possible

Step 1：Choose search direction

Basic assumption：We can usually only expect to know the minimization function $f\left(x_{k}\right)$ locally at x_{k} ．
That means that we can only evaluate

$$
f\left(x_{k}\right) \quad \nabla f\left(x_{k}\right)=g_{k} \quad \nabla^{2} f\left(x_{k}\right)=H_{k}
$$

For a search direction，try to model f in the vicinity of x_{k} by a Taylor series：

$$
\begin{aligned}
f\left(x_{k}+p_{k}\right) & \approx f\left(x_{k}\right) \\
& +g_{k}^{T} p_{k} \\
& +\frac{1}{2} p_{k}^{T} H_{k} p_{k}+\ldots
\end{aligned}
$$

Step 1: Choose search direction

Goal: Approximate $f(\cdot)$ in the vicinity of x_{k} by a model

$$
f\left(x_{k}+p\right) \approx m_{k}(p)=f_{k}+g_{k}^{T} p+\frac{1}{2} p^{T} H_{k} p+\ldots
$$

$$
\text { with } \quad f\left(x_{k}\right)=f_{k} \quad \nabla f\left(x_{k}\right)=g_{k} \quad \nabla^{2} f\left(x_{k}\right)=H_{k}
$$

Then: Choose that direction p_{k} that minimizes the model $m_{k}(p)$

Step 1: Choose search direction

Method 1 (Gradient method, Method of Steepest Descent):

 search direction is minimizing direction of linear model$$
f\left(x_{k}+p\right) \approx f_{k}+g_{k}^{T} p=m_{k}(p)
$$

$$
p_{k}=-g_{k}
$$

Step 1: Choose search direction

Method 2 (Newton's method):
search direction is to the minimum of the quadratic model

$$
m_{k}(p)=f_{k}+g_{k}^{T} p+\frac{1}{2} p^{T} H_{k} p
$$

Minimum is characterized by

$$
\frac{\partial m_{k}(p)}{\partial p}=g_{k}+H_{k} p=0 \quad \rightarrow \quad p_{k}=-H_{k}^{-1} g_{k}
$$

Step 1: Choose search direction

Method 2 (Newton's method) -- alternative viewpoint:
Newton step is also generated when applying Newton's method for the root-finding problem $(F(x)=0)$ to the necessary optimality condition:

$$
\nabla f\left(x^{*}\right)=0
$$

Linearize necessary condition around x_{k} :

$$
\begin{gathered}
0=\nabla f\left(x^{*}\right)=\underset{g_{k}}{\nabla f\left(x_{k}\right)}+\underset{H_{k}}{\nabla^{2} f\left(x_{k}\right)}\left(x^{*}-x_{k}\right)+\ldots \\
p_{k}=-H_{k}^{-1} g_{k}
\end{gathered}
$$

Step 1: Choose search direction

Method 3 (A third order method):

The search direction is to the minimum of the cubic model

$$
m_{k}(p)=f_{k}+g_{k}^{T} p+\frac{1}{2} p^{T} H_{k} p+\frac{1}{6}\left[\frac{\partial^{3} f}{\partial x_{l} \partial x_{m} \partial x_{n}}\right]_{k} p_{l} p_{m} p_{n}
$$

Minimum is characterized by the quadratic equation

$$
\frac{\partial m_{k}(p)}{\partial p}=g_{k}+H_{k} p+\frac{1}{2}\left[\frac{\partial^{3} f}{\partial x_{l} \partial x_{m} \partial x_{n}}\right]_{k} p_{l} p_{m}=0 \quad \rightarrow \quad p_{k}=? ? ?
$$

But: There is no practical way to compute the solution of this equation for problems with more than one variable.

Step 2: Determination of Step Length

Once the search direction is known, compute the update by choosing a step length α_{k} and set

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k}
$$

Determine the step length by solving the 1-d minimization problem (line search):

$$
\alpha_{k}=\arg \min _{\alpha} f\left(x_{k}+\alpha p_{k}\right)
$$

For Newton's method: If the quadratic model is good, then step is good, then take full step with $\alpha_{k}=1$

Convergence: Gradient method

Gradient method converges linearly, i.e.

$$
\left\|x_{k}-x^{*}\right\| \leq C\left\|x_{k-1}-x^{*}\right\|
$$

Gain is a fixed factor $C<1$
Convergence can be very slow if C close to 1 .
Example: If $f(x)=x^{\top} H x$, with H positive definite and for optimal line search, then

$$
C \approx \frac{\lambda_{n}-\lambda_{1}}{\lambda_{n}+\lambda_{1}} \quad\left\{\lambda_{i}\right\}=\text { spectrum } H
$$

110

Convergence: Newton's method

Newton's method converges quadratically, i.e.

$$
\left\|x_{k}-x^{*}\right\| \leq C\left\|x_{k-1}-x^{*}\right\|^{2}
$$

Optimal convergence order only if step length is 1 , otherwise slower convergence (step length is 1 if quadratic model valid!)

If quadratic convergence: accelerating progress as iterations proceed.

Size of C :

$$
C \sim \sup _{x, y} \frac{\left\|\nabla^{2} f\left(x^{*}\right)^{-1}\left(\nabla^{2} f(x)-\nabla^{2} f(y)\right)\right\|}{\|x-y\|}
$$

C measures size of nonlinearity beyond quadratic part.

Example 1: Gradient method

$$
f(x, y)=-x^{3}+2 x^{2}+y^{2}
$$

Local minimum at $x=y=0$, saddle point at $x=4 / 3, y=0$

Example 1: Gradient method

Convergence of gradient method: Converges quite fast, with linear rate Mean value of convergence constant C : 0.28 At ($x=0, y=0$), there holds

$$
\nabla^{2} f(0,0) \sim\left\{\lambda_{1}=4, \lambda_{2}=2\right\} \quad C \approx \frac{4-2}{4+2} \approx 0.33
$$

Example 1: Newton's method

$$
f(x, y)=-x^{3}+2 x^{2}+y^{2}
$$

Local minimum at $x=y=0$, saddle point at $x=4 / 3, y=0$

angerth

Example 1: Newton's method

Convergence of Newton's method: Converges very fast, with quadratic rate Mean value of convergence constant C : 0.15

$$
\left\|x_{k}-x^{*}\right\| \leq C\left\|x_{k-1}-x^{*}\right\|^{2}
$$

Theoretical estimate yields $C=0.5$

Example 1: Comparison between methods

Newton's method much faster than gradient method
Newton's method superior for high accuracy due to higher order of convergence

Gradient method simple but converges in a reasonable number of iterations as well

Example 2: Gradient method

$$
f(x, y)=\sqrt[4]{\left(\left(x-y^{2}\right)^{2}+\frac{1}{100}\right)}+\frac{1}{100} y^{2}
$$

(Banana valley function)
Global minimum at $x=y=0$

Example 2: Gradient method

Convergence of gradient method: Needs almost 35,000 iterations to come closer than 0.1 to the solution!
Mean value of convergence constant $C: 0.99995$ At ($x=4, y=2$), there holds

$$
\nabla^{2} f(4,2) \sim\left\{\lambda_{1}=0.1, \lambda_{2}=268\right\} \quad C \approx \frac{268-0.1}{268+0.01} \approx 0.9993
$$

Example 2: Newton's method

$$
f(x, y)=\sqrt[4]{\left(\left(x-y^{2}\right)^{2}+\frac{1}{100}\right)}+\frac{1}{100} y^{2}
$$

(Banana valley function)
Global minimum at $x=y=0$

Example 2: Newton's method

Convergence of Newton's method: Less than 25 iterations for an accuracy of better than 10^{-7} !

Convergence roughly linear for first 15-20 iterations since step length $\alpha_{k} \neq 1$

Convergence roughly quadratic for last iterations with step length $\alpha_{k} \approx 1$

Example 2: Comparison between methods

Newton's method much faster than gradient method
Newton's method superior for high accuracy (i.e. in the vicinity of the solution) due to higher order of convergence

Gradient method converges too slowly for practical use

Practical line search strategies

Ideally: Use an exact step length determination (line search) based on

$$
\alpha_{k}=\arg \min _{\alpha} f\left(x_{k}+\alpha p_{k}\right)
$$

This is a 1d minimization problem for α, solvable via Newton's method/bisection search/etc.

However: Expensive, may require many function/gradient evaluations.

Instead: Find practical criteria that guarantee convergence but need less function evaluations!

Practical line search strategies

Strategy: Find practical criteria that guarantee convergence but need less evaluations.

Rationale:

- Near the optimum, quadratic approximation of f is valid \rightarrow take full steps (step length 1) there
- Line search only necessary far away from the solution
- If close to solution, need to try $\alpha=1$ first

Consequence:

- Near solution, quadratic convergence of Newton's method is retained
- Far away, convergence is slower in any case.

Practical line search strategies

Practical strategy: Use an inexact line search that:

- finds a reasonable approximation to the exact step length
- chosen step length guarantees a sufficient decrease in $f(x)$;
- chooses full step length 1 for Newton's method whenever possible.

$$
f(x, y)=x^{4}-x^{2}+y^{4}-y^{2}
$$

Practical line search strategies

Wolfe condition 1 ("sufficient decrease" condition): Require step lengths to produce a sufficient decrease

$$
\begin{aligned}
f\left(x_{k}+\alpha p_{k}\right) \leq & f\left(x_{k}\right)+c_{1} \alpha\left[\frac{\partial f\left(x_{k}+\alpha p_{k}\right)}{\partial \alpha}\right]_{\alpha=0} \\
& =f_{k}+c_{1} \alpha \nabla f_{k} \cdot p_{k}
\end{aligned}
$$

Necessary:

$$
0<c_{1}<1
$$

Typical values:

$$
c_{1}=10^{-4}
$$

i.e.: only very small decrease mandated

Practical line search strategies

Wolfe condition 2 ("curvature" condition):
Require step lengths where f has shown sufficient curvature upwards
$\nabla f\left(x_{k}+\alpha p_{k}\right) \cdot p_{k}=\left[\frac{\partial f\left(x_{k}+\alpha p_{k}\right)}{\partial \alpha}\right]_{\alpha=\alpha_{k}} \geq c_{2}\left[\frac{\partial f\left(x_{k}+\alpha p_{k}\right)}{\partial \alpha}\right]_{\alpha=0}=c_{2} \nabla f_{k} \cdot p_{k}$

Necessary:

$$
0<c_{1}<c_{2}<1
$$

Typical:

$$
c_{2}=0.9
$$

Rationale: Exclude too small step lengths

Practical line search strategies

Wolfe conditions
Conditions 1 and 2 usually yield reasonable ranges for the step lengths, but do not guarantee optimal ones

Practical line search strategies－Alternatives

Strict Wolfe conditions：

$$
\left.\left|\left[\frac{\partial f\left(x_{k}+\alpha p_{k}\right)}{\partial \alpha}\right]_{\alpha=\alpha_{k}}\right| \leq c_{2} \| \frac{\partial f\left(x_{k}+\alpha p_{k}\right)}{\partial \alpha}\right]_{\alpha=0}
$$

Goldstein conditions：

$$
f\left(x_{k}+\alpha p_{k}\right) \geq f\left(x_{k}\right)+\left(1-c_{1}\right) \alpha\left[\frac{\partial f\left(x_{k}+\alpha p_{k}\right.}{\partial \alpha}\right]_{\alpha=0}
$$

Practical line search strategies

Conditions like the ones above tell us whether a given step length is acceptable or not.

In practice, don't try too many step lengths - checking the conditions involves function evaluations of $f(x)$.

Typical strategy ("Backtracking line search"):

1. Start with a trial step length $\alpha_{t}=\bar{\alpha}$ (for Newton's method: $\bar{\alpha}=1$)
2. Verify acceptance conditions for this α_{t}
3. If yes: $\alpha_{k}=\alpha_{t}$
4. If no: $\quad \alpha_{t}=c \alpha_{t}, c<1$ and go to 2 .

Note: A typical reduction factor is $c=\frac{1}{2}$

Practical line search strategies

An alternative strategy ("Interpolating line search"):

- Start with $\alpha_{t}^{(0)}=\bar{\alpha}=1$, set $i=0$
- Verify acceptance conditions for $\alpha_{t}^{(i)}$
- If yes: $\alpha_{k}=\alpha_{t}^{(i)}$
- If no:
- let $\quad \phi_{k}(\alpha)=f\left(x_{k}+\alpha p_{k}\right)$
- from evaluating the sufficient decrease condition

$$
f\left(x_{k}+\alpha_{t}^{(i)} p_{k}\right) \leq f_{k}+c_{1} \alpha_{t}^{(i)} \nabla f_{k} \cdot p_{k}
$$

we already know $\quad \phi_{k}(0)=f\left(x_{k}\right), \quad \phi_{k}{ }^{\prime}(0)=\nabla f_{k} \cdot p_{k}=g_{k} \cdot p_{k}$ and $\phi_{k}\left(\alpha_{t}^{(i)}\right)=f\left(x_{k}+\alpha_{t}^{(i)} p_{k}\right)$

- if $i=0$ then choose $\alpha_{t}^{(i+1)}$ as minimizer of the quadratic function that interpolates $\phi_{k}(0), \phi_{k}^{\prime}(0), \phi_{k}\left(\alpha_{t}^{(i)}\right)$
- if $i>0$ then choose $\alpha_{t}^{(i+1)}$ as the minimizer of the cubic function that interpolates $\phi_{k}(0), \phi_{k}^{\prime}(0), \phi_{k}\left(\alpha_{t}^{(i)}\right), \phi_{k}\left(\alpha_{t}^{(i-1)}\right)$

Practical line search strategies

An alternative strategy ("Interpolating line search"):
Step 1: Quadratic interpolation

Practical line search strategies

An alternative strategy ("Interpolating line search"):
Step 2 and following: Cubic interpolation

