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Part 34

Further Applications IV:

Stochastic and Robust Optimization
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Motivation

Problem: In many optimization applications, we have material/system 
parameters that are not known exactly, or external forces that are 
unpredictable. We want to take this into account when optimizing.

Example 1: We want to design an air plane that is as efficient as 
possible, but we only know that the viscosity of air at 10km altitude is

depending on the prevailing temperature.

Example 2: We want to compute the trajectory for a rocket that takes 
the least amount of fuel. But this trajectory will depend on current wind 
conditions which we don't know exactly.

Example: We want to optimally produce an oil field but we have only 
incomplete knowledge of the physical structure of the oil reservoir.
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Some preliminaries

Definition: Let p be an uncertain parameter (such as the viscosity, the 
wind field, the oil reservoir) and let

be a probability density for this parameter.

Let F(p) be a function of p. Then we call

the expectation value of F and 

the standard deviation of F under P.

P p

E[ F ]  = ∫ F  pP p  dp

 [F ]  = ∫ F  p−E [ F] 2 P p dp
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Some preliminaries

Example 1 (Viscosity): If we know that 

then a reasonable choice would be

Example 2 (Rocket in a wind field): Close to the surface, a reasonable 
model could be
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Some preliminaries

Practical approach: In practice, computing integrals like

is difficult if the number of variables in p is large.

In that case, we can choose a uniformly distributed sample {p
i
} and 

approximate

Alternatively, we can choose samples {p
i
} based on the probability 

distribution P(p) and approximate

E[ F]  ≈  
1
N
∑i=1

N

F piP pi

E[ F ]  = ∫ F  pP p  dp

E[ F]  ≈  
1
N
∑i=1

N
F pi
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Stochastic optimization

The state equation: Let us assume that state variables y, control 
variables q and system parameters p are related by

and that we have additional constraints of the form

Deterministic optimization: If we knew that the parameters p then the 
optimization problem would have the form

Since we have assumed that we know p this problem can be 
deterministically solved to find an optimal control q.

f  y ,q; p=0

min y ,q       F  y , q 

subject to  f  y , q; p =0
                 g  y ,q ≥0

g  y , q ≥0
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Stochastic optimization

Stochastic optimization: In reality, me may not know p exactly but 
only a probability distribution function P(p). In this case, we can pose 
several versions of a stochastic problem.

Version 1: Average control – optimize the average cost over all 
possible values p by finding a single control q so that:

Practical implementation: Draw samples {p
i
} from P(p) and solve

min y p , q      E [F  yp , q]

subject to  f  yp , q; p =0
                 g  yp , q ≥0

min y i , q      
1
N
∑i=1

N
F  yi , qi

subject to  f  yi , q ; pi=0     i=1,. .. , N
                 g  yi , q ≥0          i=1,. .. , N
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Stochastic optimization

Stochastic optimization: In reality, me may not know p exactly but 
only a probability distribution function P(p). In this case, we can pose 
several versions of a stochastic problem.

Version 2a: Risk averse control – optimize average cost plus some 
safety factor over all possible values p:

Practical implementation: Draw samples {p
i
} from P(p) and solve

min y p , q       E [F  yp , q ][ F  y p ,q ]

subject to  f  yp , q; p =0
                 g  yp , q ≥0

min y i , q      
1
N
∑i=1

N
F  yi , qi



N {∑i=1

N

[F  yi , qi−
1
N
∑ j=1

N
F  y j, q j]

2

}
1
2

subject to  f  yi , qi ; pi=0     i=1,. .. , N
                 g  yi , qi≥0         i=1,. .. , N
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Stochastic optimization

Stochastic optimization: In reality, me may not know p exactly but 
only a probability distribution function P(p). In this case, we can pose 
several versions of a stochastic problem.

Version 2b: Risky control – optimize average cost minus some safety 
factor over all possible values p:

Practical implementation: Draw samples {p
i
} from P(p) and solve

min y p , q       E [F  yp , q ]−[ F  y p ,q ]

subject to  f  yp , q; p =0
                 g  yp , q ≥0

min y i , q      
1
N
∑i=1

N
F  yi , qi−



N {∑i=1

N

[F  yi , qi−
1
N
∑ j=1

N
F  y j, q j]

2

}
1
2

subject to  f  yi , qi ; pi=0     i=1,. .. , N
                 g  yi , qi≥0         i=1,. .. , N
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Stochastic optimization

Stochastic optimization: In reality, me may not know p exactly but 
only a probability distribution function P(p). In this case, we can pose 
several versions of a stochastic problem.

Version 3: Robust control – optimize the worst case cost over all 
possible values p:

Practical implementation: Draw samples {p
i
} from P(p) and solve

min y p , q      maxp , P  p0 F  y p , q 

subject to  f  yp , q; p =0
                 g  yp , q ≥0

min y i , q      max1≤i≤N F  y i , qi

subject to  f  yi , qi ; pi=0     i=1,. .. , N
                 g  yi , qi≥0         i=1,. .. , N
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Practical aspects

Which formulation to choose for stochastic optimization:

● If no recourse is possible if the “real” parameters happen to be 
unfavorable, then optimization must be robust.

- Airfoils must be designed for the least favorable viscosity
- Available rocket fuel must be designed for the worst possible winds

● If losses are harder to tolerate than wins, then be risk averse:

- Investment strategies for retirement funds

● If we can mitigate unfavorable parameters, then we can choose the 
risky strategy (“gambling”):

- If we are Warren Buffett
- Production strategies for oil fields where in the worst case another
  hole can be drilled
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Practical aspects

Stochastic optimization is typically very expensive:

● Integrals can rarely be computed analytically
● Sample sets {p

i
} must be large enough to provide a good 

approximation of the integrals
● If the deterministic problem has M constraints of the form

then the stochastic implementation has MN constraints:

● Current research topics therefore are:
- efficient sample generation
- model reduction techniques
- parametric descriptions of constraints (e.g. polynomial chaos)

f  yi , qi ; pi=0    i=1,. .. , N
g  y i , qi≥0          i=1,. .. , N

f  y , q; p=0
g  y , q ≥0
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