Part 34

Further Applications IV:

Stochastic and Robust Optimization
Motivation

Problem: In many optimization applications, we have material/system parameters that are not known exactly, or external forces that are unpredictable. We want to take this into account when optimizing.

Example 1: We want to design an air plane that is as efficient as possible, but we only know that the viscosity of air at 10km altitude is

\[1.1 \cdot 10^{-4} \frac{\text{ft}^2}{\text{s}} \leq \nu \leq 1.2 \cdot 10^{-4} \frac{\text{ft}^2}{\text{s}} \]

depending on the prevailing temperature.

Example 2: We want to compute the trajectory for a rocket that takes the least amount of fuel. But this trajectory will depend on current wind conditions which we don't know exactly.

Example: We want to optimally produce an oil field but we have only incomplete knowledge of the physical structure of the oil reservoir.
Some preliminaries

Definition: Let p be an uncertain parameter (such as the viscosity, the wind field, the oil reservoir) and let

$$P(p)$$

be a probability density for this parameter.

Let $F(p)$ be a function of p. Then we call

$$E[F] = \int F(p)P(p) \, dp$$

the expectation value of F and

$$\sigma[F] = \sqrt{\int (F(p) - E[F])^2 P(p) \, dp}$$

the standard deviation of F under P.
Some preliminaries

Example 1 (Viscosity): If we know that

\[1.1 \cdot 10^{-4} \text{ft}^2 \, \text{s} \leq \nu \leq 1.2 \cdot 10^{-4} \text{ft}^2 \, \text{s} \]

then a reasonable choice would be

\[
P(\nu) = \begin{cases}
10^5 \frac{\text{S}}{\text{ft}^2} & \text{if } 1.1 \cdot 10^{-4} \frac{\text{ft}^2}{\text{s}} \leq \nu \leq 1.2 \cdot 10^{-4} \frac{\text{ft}^2}{\text{s}} \\
0 & \text{otherwise}
\end{cases}
\]

Example 2 (Rocket in a wind field): Close to the surface, a reasonable model could be

\[
P(\vec{v}) = \frac{1}{C} e^{-\frac{||\vec{v}||^2}{(10 \text{mph})^2}}
\]
Some preliminaries

Practical approach: In practice, computing integrals like

\[E[F] = \int F(p)P(p) \, dp \]

is difficult if the number of variables in \(p \) is large.

In that case, we can choose a uniformly distributed sample \(\{p_i\} \) and approximate

\[E[F] \approx \frac{1}{N} \sum_{i=1}^{N} F(p_i)P(p_i) \]

Alternatively, we can choose samples \(\{p_i\} \) based on the probability distribution \(P(p) \) and approximate

\[E[F] \approx \frac{1}{N} \sum_{i=1}^{N} F(p_i) \]
Stochastic optimization

The state equation: Let us assume that state variables y, control variables q and system parameters p are related by

$$f(y, q; p) = 0$$

and that we have additional constraints of the form

$$g(y, q) \geq 0$$

Deterministic optimization: If we knew that the parameters p then the optimization problem would have the form

$$\min_{y, q} F(y, q)$$

subject to

$$f(y, q; p) = 0$$

$$g(y, q) \geq 0$$

Since we have assumed that we know p this problem can be deterministically solved to find an optimal control q.

Stochastic optimization

Stochastic optimization: In reality, we may not know p exactly but only a probability distribution function $P(p)$. In this case, we can pose several versions of a stochastic problem.

Version 1: Average control – optimize the average cost over all possible values p by finding a single control q so that:

$$\min_{y_p, q} \quad E[F(y_p, q)]$$

subject to

$$f(y_p, q; p) = 0$$

$$g(y_p, q) \geq 0$$

Practical implementation: Draw samples $\{p_i\}$ from $P(p)$ and solve

$$\min_{y_i, q} \quad \frac{1}{N} \sum_{i=1}^{N} F(y_i, q_i)$$

subject to

$$f(y_i, q; p_i) = 0 \quad i=1,\ldots, N$$

$$g(y_i, q) \geq 0 \quad i=1,\ldots, N$$
Stochastic optimization

Stochastic optimization: In reality, me may not know p exactly but only a probability distribution function $P(p)$. In this case, we can pose several versions of a stochastic problem.

Version 2a: Risk averse control – optimize average cost plus some safety factor over all possible values p:

$$\min_{y, q} \quad E[F(y, q)] + \alpha \sigma[F(y, q)]$$
subject to $f(y, q; p) = 0$
$g(y, q) \geq 0$

Practical implementation: Draw samples $\{p_i\}$ from $P(p)$ and solve

$$\min_{y_i, q} \quad \frac{1}{N} \sum_{i=1}^{N} F(y_i, q_i) + \frac{\alpha}{\sqrt{N}} \left\{ \sum_{i=1}^{N} \left[F(y_i, q_i) - \frac{1}{N} \sum_{j=1}^{N} F(y_j, q_j) \right] \right\}^2 \frac{1}{2}$$
subject to $f(y_i, q_i; p_i) = 0 \quad i = 1, \ldots, N$
$g(y_i, q_i) \geq 0 \quad i = 1, \ldots, N$
Stochastic optimization

Stochastic optimization: In reality, we may not know p exactly but only a probability distribution function $P(p)$. In this case, we can pose several versions of a stochastic problem.

Version 2b: Risky control – optimize average cost minus some safety factor over all possible values p:

$$\begin{align*}
&\min_{y, p, q} \quad E[F(y, q)] - \alpha \sigma[F(y, q)] \\
&\text{subject to} \quad f(y, p, q) = 0 \\
&\quad g(y, q) \geq 0
\end{align*}$$

Practical implementation: Draw samples $\{p_i\}$ from $P(p)$ and solve

$$\begin{align*}
&\min_{y, q} \quad \frac{1}{N} \sum_{i=1}^{N} F(y, q_i) - \frac{\alpha}{\sqrt{N}} \left[\sum_{i=1}^{N} \left[F(y, q_i) - \frac{1}{N} \sum_{j=1}^{N} F(y, q_j) \right] \right]^{1/2} \\
&\text{subject to} \quad f(y, q_i; p_i) = 0 \quad i = 1, \ldots, N \\
&\quad g(y, q_i) \geq 0 \quad i = 1, \ldots, N
\end{align*}$$
Stochastic optimization

Stochastic optimization: In reality, we may not know p exactly but only a probability distribution function $P(p)$. In this case, we can pose several versions of a stochastic problem.

Version 3: Robust control – optimize the worst case cost over all possible values p:

$$
\min_{y_p, q} \quad \max_{p, P(p) > 0} F(y_p, q)
$$
subject to $f(y_p, q; p) = 0$
$$
g(y_p, q) \geq 0
$$

Practical implementation: Draw samples $\{p_i\}$ from $P(p)$ and solve

$$
\min_{y_i, q} \quad \max_{1 \leq i \leq N} F(y_i, q_i)
$$
subject to $f(y_i, q_i; p_i) = 0 \quad i = 1, \ldots, N$
$$
g(y_i, q_i) \geq 0 \quad i = 1, \ldots, N$$
Practical aspects

Which formulation to choose for stochastic optimization:

• If no recourse is possible if the “real” parameters happen to be unfavorable, then optimization must be robust.

 - Airfoils must be designed for the least favorable viscosity
 - Available rocket fuel must be designed for the worst possible winds

• If losses are harder to tolerate than wins, then be risk averse:

 - Investment strategies for retirement funds

• If we can mitigate unfavorable parameters, then we can choose the risky strategy (“gambling”):

 - If we are Warren Buffett
 - Production strategies for oil fields where in the worst case another hole can be drilled
Practical aspects

Stochastic optimization is typically very expensive:

- Integrals can rarely be computed analytically
- Sample sets \(\{p_i\} \) must be large enough to provide a good approximation of the integrals
- If the deterministic problem has \(M \) constraints of the form
 \[
 f(y, q; p) = 0 \\
 g(y, q) \geq 0
 \]
 then the stochastic implementation has \(MN \) constraints:
 \[
 f(y_i, q_i; p_i) = 0 \quad i = 1, \ldots, N \\
 g(y_i, q_i) \geq 0 \quad i = 1, \ldots, N
 \]

- Current research topics therefore are:
 - efficient sample generation
 - model reduction techniques
 - parametric descriptions of constraints (e.g. polynomial chaos)