
61

Part 17

Linear programming 2:
A naïve solution algorithm

minimize cT x
 Ax ≥ b

62

Theorem: A polyhedron can only have finitely many vertices.

Corollary: One (simplistic) way to find a solution to a linear
program is the following procedure:

1.Convince ourselves that the linear program has a bounded
solution

2.Find all basic solutions

3.Among these, identify all feasible basic solutions by testing
which of the basic solutions satisfy all constraints. These are the
vertices of the feasible set

4.Among these, find the vertex (feasible basic solution) or vertices
that have the lowest value of the objective function. These are the
solution(s) of the problem

A naïve algorithm

63

Practical implementation of step 2:
A basic solution of a problem with constraints

is a point x at which n linearly independent constraints are active. (In
addition to possibly more constraints that then need to be linearly
dependent on the previous ones.)

One way to enumerate all basic solutions is by enumerating all
subsets of n constraints among the total of m constraints:

● Take all possible selections I of n indices within the set [1,m]

● For each I see if the constraints are linearly independent. If so,
find the (unique) point x at which

This is a basic solution.

A naïve algorithm

Ax≥b, or equivalently ai
T

x≥bi ,i=1... m

ai
T

x=b i ∀ i∈ I

64

Practical implementation of step 2 – example:
If we have 3 variables x={x

1
,x

2
,x

3
} and 8 constraints

then we need to

● try first the set I={1,2,3}

● see if the 3x3 matrix has full rank

● If so, then the equation A
I
x

I
=b

I
 is unique and x

I
 is a basic solution

● Continue with the sets I={1,2,4}, {1,2,5}, ..., {6,7,8} and do the
same steps

A naïve algorithm

Ax≥b , or equivalently ai
T x ≥b i , i=1...8

A I=
a1

T

a2
T

a3
T 

65

Practical implementation of step 3:
Now that we have a basic solution x, we need to determine which of
those are feasible.

By construction, we already know that

but we also have to check the remaining m-n constraints:

● Go through all indices

● If for any of these indices then this basic solution is
infeasible, i.e. it can not be a feasible basic solution and therefore
not be a vertex. We can discard this basic solution

● If the basic solution turns out to be feasible with regards to all
other constraints, then it must be a vertex

A naïve algorithm

ai
T

x=b i ∀ i∈ I

i∉ I

ai
T

xb i

66

Practical implementation of step 4:
Now that we have a feasible basic solution x, we need to determine
which one is the best with regard to the objective function.

To do this:

● For every set of n indices I compute x
I
 as the basic solution

● If it turns out to be feasible, compute f(x
I
)=cTx

I

● If this value f(x
I
) is bigger than the previously smallest one seen,

then forget about this feasible basic solution and move on to the
next set of n indices

● If this value f(x
I
) is smaller than the previously smallest one seen,

then save f(x
I
) and x

I
 for later comparison and move on to the next

set of n indices

A naïve algorithm

67

Assessment of the algorithm:

● The algorithm works and finds the solution if there exists a
bounded solution

● The algorithm is unaffected by degeneracy

● The algorithm is slow because it needs to test every vertex of the
feasible region

● Since the number of vertices in general grows combinatorically
with the number of variables and constraints, the run time of the
algorithm grows exponentially as

● Such algorithms are not suited for practical, large-scale problems
with thousands or millions of variables and constraints

A naïve algorithm

mn  n3
m−nn ≈2.5

n if m= n

68

Part 18

Linear programming 3:
Dantzig's simplex algorithm

minimize cT x
 Ax = b
 x ≥ b

69

Instead of enumerating and testing all vertices, we should:

● Start with a feasible basic solution (vertex)

● Tests its neighbors and go to one with a lower objective function
value

● Since the objective function values are a decreasing sequence,
cycling is not possible; since there are only finitely many vertices,
the algorithm must terminate in a finite number of steps

● Since we only accept vertices with lower objective function values,
we hope that we need to visit far fewer than all vertices

This is the basic idea of Dantzig's simplex algorithm

The idea

70

Theorem:
Let the feasible set of a linear program in standard form be described by
the equations

where the matrix A does not have full row rank (i.e. its rows are linearly
dependent).
If P is not empty, then there exists a matrix with full row rank so that

and Q=P.

Due to this equivalence, we will in the following
always assume that A has full row rank.

Preliminary considerations 1

P={x ∈ℝ
n : Ax=b , A ∈ℝ

m×n , m≤n , x≥0}

Q={x∈ℝ
n : A x=b , A ∈ℝ

m'×n , m 'm≤n, x≥0}

71

The feasible sets of linear programs in standard form are also polyhedra
and are described by the equations

Then at any feasible basic solution (vertex of P) the following holds
true:

● all m equality constraints are active

● at least n-m variables x
i
 are zero

● if a basic solution is non-degenerate, exactly n-m variables are zero

Standard form is so convenient because we don't just know
that n-m inequalities are active, but can associate

them with vector components!

Preliminary considerations 2

P={x ∈ℝ
n : Ax=b , A ∈ℝ

m×n , m≤n , x≥0}

72

Definition:
Let be a polyhedron. Let be two basic solutions of P.
We call them adjacent if

and

contain a common set of n-1 vectors that are linearly independent.

 Non-adjacent vertices

 Adjacent vertices

Preliminary considerations 3

P⊂ℝ
n

{ai :i ∈I  p1}

p1, p2∈ℝ
n

{ai :i ∈I  p2}

73

In particular, for standard form:
Since equality constraints always have to be active, every feasible basic
solutions of a polyhedron in standard form

must have m active equality constraints, and

● exactly n-m variables x
i
that are zero (if the basic solution is not

degenerate)

● or more than n-m variables x
i
that are zero (if the basic solution is

not degenerate).

In the non-degenerate case, two basic solutions are adjacent if they
differ in exactly one pair of variables x

i
 that are zero/nonzero at one

vertex and nonzero/zero at the other!

Preliminary considerations 3

P={x ∈ℝ
n : Ax=b , A ∈ℝ

m×n , m≤n , x≥0}

74

Definition:
Let x be a point in a polyhedron P. Then we call a vector d a feasible
direction if

Example:

feasible directions

infeasible directions

Preliminary considerations 4

∃0 : x d∈P

p

p
p

75

In particular:
Let p be a non-degenerate vertex of a polyhedron P described in
standard form:

Let I(p) be the active set of constraints at p. Then any feasible direction
d needs to satisfy the following conditions:

Preliminary considerations 4

P={x ∈ℝ
n : Ax=b , A ∈ℝ

m×n , m≤n , x≥0}

Ad=0
d i≥0 ∀ im∈ I p

76

Conversely:
Let I, #I=n be a set of indices. Assume the associated constraints are
linearly independent. Then I describes a vertex p of a polyhedron

If the vertex is not degenerate, then any direction that satisfies

is feasible. If the vertex is degenerate, then we have to require that

Note: These relations can be used to test whether a proposed direction
is feasible or not.

Preliminary considerations 4

P={x ∈ℝ
n
: Ax=b , A ∈ℝ

m×n
, m≤n , x≥0}

Ad=0
di≥0 ∀ im∈I  p

Ad=0
d i≥0 ∀ im∈ I p

 di≥0 ∀ im∉I  p , xi=0

77

The simplex algorithm works on standard form:

At every step of the simplex algorithm, the current state is described by
the following pieces of information:

● A set of indices H, #H=m, called the basis. H describes the
variables that are not bound by the constraints and so is somewhat
complementary to the set of active indices I.

● H defines a basis matrix B=A
H
 that consists of the columns of A

listed in H. B is the “interesting” part of the matrix A
I
.

● H defines a basic solution x of a polyhedron (which in the algorithm
will always be feasible) that satisfies

Due to non-degeneracy, for each vector element.

The simplex algorithm, non-degenerate case

P={x ∈ℝ
n
: Ax=b , A ∈ℝ

m×n
, m≤n , x≥0}

B x H=b
 x

H c=0

xH0

78

Why bases instead of active sets:

Let the polyhedron be described by

Then at every (non-degenerate) basic solution we have an active set I
with exactly n elements. These are:

● The indices 1...m corresponding to equality constraints

● A subset of size (n-m) of the indices m+1...m+n corresponding to
the positivity constraints

The linear system that describes the basic solution is therefore:

x therefore consists of two parts: components that are not necessarily
zero, and that must be zero. Therefore, in the first equation, only
columns listed in H participate, i.e. the basis matrix B.

The simplex algorithm, non-degenerate case

P={x ∈ℝ
n
: Ax=b , A∈ℝ

m×n
, m≤n , x≥0}

A x=b
xI i

=0 i=m1...n

xH

x
H

c

79

The main idea of the simplex algorithm:

Let H,B be the current basis and basis matrix, and x be a non-
degenerate feasible basic solution defined by H.

● To move from x
H
 to another vertex, we need to release one non-

basic variable j from its constraint x
j
=0 and make it positive.

● Our search direction should therefore be

● The basic components need to satisfy

where A
j
 denotes the jth column of A.

● The vector d so defined is called the jth basic direction.

The simplex algorithm, non-degenerate case

d j=1
di=0 i ∉H ,i≠ j

A xd=b  Ad=0  BdHA j=0  dH=−B−1 A j

80

Theorem:

Let H,B be the current basis and basis matrix, and x be a non-
degenerate feasible basic solution defined by H.

Then for every the direction defined by

is feasible.

Note 1: If x is degenerate, then d is a feasible direction if and only if

Note 2: Feasibility should not be a surprise – we still have (n-1)
constraints that are active. d is constructed to lie in this 1d subspace.

The simplex algorithm, non-degenerate case

d j=1
d i=0 i∉H ,i≠ j

dH=−B−1 A j

j∉H

dH i≥0 ∀ i∈H , x i=0

81

Theorem:

Let H,B be the current basis and basis matrix, and x be a feasible basic
solution defined by H.

Then for every the jth basic direction is a direction of descent of
the objective function if the reduced cost satisfies

The simplex algorithm, non-degenerate case

c j=c j−cH
T B−1 A j0

j∉H

82

Theorem:

Let H,B be the current basis and basis matrix, and x be a feasible basic
solution defined by H. Then:

● If then x is optimal

● If x is optimal and non-degenerate, then

Note: The first condition can be used to test whether a vertex x is
optimal – we only need to compute all reduced costs!

The simplex algorithm, non-degenerate case

c j=c j−cH
T B−1 A j≥0 ∀ j∉H

c j≥0 ∀ j∉H

83

Line search:

Let H,B be the current basis and basis matrix, and x be a non-
degenerate feasible basic solution defined by H.

Let d be a feasible basic direction. Then:

● x+θd satisfies (n-1) constraints for sufficiently small step lengths θ.

● x+θd is feasible for

The simplex algorithm, non-degenerate case

 ≤ * = mini ∈H , d i0 −x i

di


84

Algorithm:

Let H,B be the current basis and basis matrix, and x be a non-
degenerate feasible basic solution defined by H. Then perform the
following steps:

Let j=1...n, jH

Compute

If then
- compute and let l be the index for which the
 minimum is attained
- set

- start over

Try the next j. If no j allows has negative reduced costs, then we have a
solution.

The simplex algorithm, non-degenerate case


* = mini ∈H , d i0 −x i

d i


dH=−B−1 A j , c j=c j−cH
T B−1 A j

c j0

x j 
* , x H  xH 

* dH

H  H ∖ {l}∪{ j}
B l  A j

85

Note:

If all components of d turn out to be positive, then we have a direction
in which every point is feasible and we can choose . This means
that the problem has no bounded solution at the point where we
compute the step length we have already determined that d is a
direction of descent.

Theorem:

Assume the basic matrix at the beginning of the
iteration has full rank. Then the new basic matrix

also has full rank.

The simplex algorithm, non-degenerate case


*
=∞

B= A H 1
A H 2

... AH m 

B= A H 1
A H 2

... A j ... AH m 

86

Theorem:

The algorithm just outlined terminates after finitely many steps with
one of the following results:

● If all reduced costs are non-negative, then the current vertex is a
solution of the minimization problem

● If at a vertex at least one of the reduced costs is negative but the
corresponding search direction satisfies d>0, then the linear
problem is unbounded from below and has no bounded solution.

The simplex algorithm, non-degenerate case

c j

c j

87

Note: In our algorithm, we test
● Is one of the reduced costs negative
● If so, let j enter the basis (i.e. release its constraint and make it a free

variable)

Question:

What do we do if the reduced costs are negative for more than one
index?

We could choose any variable with a negative reduced cost, but maybe
some strategies will lead to algorithms that require fewer iterations than
others.

The simplex algorithm, non-degenerate case

c j

88

Question: What do we do if the reduced costs are negative for more
than one index?

Answer: There are many pivoting strategies, for example we could
● Choose that index j for which the reduced cost is the most negative
● Choose that index j for which is the most negative
● Try to choose an index j that has not recently been chosen
●
● Bland's rule: Take the first index j for which the reduced cost is

negative

Note: More complex strategies often reduce the number of iterations at
the cost of more expensive iterations. Bland's rule is a good choice to
avoid cycling in the degenerate case.

The simplex algorithm, non-degenerate case


*
c j

89

Two things can happen in the degenerate case:

● We want to release constraint j and let x
j
 enter the basis but we can't

go into direction d=-B-1A
j
 because we immediately hit a previously

active constraint that was not part of the basis H.

In other words, we find that What do we do?

Example (not for standard form
linear problems): Constraints 1 and
2 are active. We want to release
constraint 1 but we can't move away
from it.

The degenerate case


*
=0.

90

Two things can happen in the degenerate case:

● We let x
j
 enter the basis which then has (n-1) active constraints. We

move in direction d=-B-1A
j
 but at we find more than one new

constraint.

In this case, which of these constraints should exit the basis?

Example (not for standard form):
Constraints 2 and 3 are active. We
want to release constraint 3 and move
along constraint 2 but then both
constraints 1 and 5 become active.

The degenerate case


*

91

Case 1: We find that

In this case, we know that more than n constraints are active at the
current vertex, i.e. some of the basic (“free”) variables in H are zero.

The question is then which of these variables to throw out of the basis
in response to letting x

j
 enter the basis without taking a step that

decreases the objective function?

The question is important because we want to avoid cycling, i.e.
returning to the same basis after a number of steps without reducing the
objective function.

Answer: There are a number of pivoting strategies. The simplest is
Bland's rule – if there are multiple constraints that become active, take
the one with the smallest index.

The degenerate case


*
=0.

92

Case 2: We find that but that more than one constraint
becomes active.

The question is then which of the variables whose constraints become
active to throw out of the basis (i.e. let them “exit the basis”) in
response to letting x

j
 enter the basis?

Answer: There are a number of pivoting strategies. The simplest is
Bland's rule – if there are multiple constraints that become active, take
the one with the smallest index.

The degenerate case


*
0

93

Theorem:

Using Bland's rule for selecting
● which variable will enter the basis
● which variable will exit the basis if there are multiple that are

eligible

avoids the problem of cycling and therefore guarantees that the
algorithm terminates in finite time.

The degenerate case

94

Problem: The simplex algorithm needs to start from a feasible basic
solution.

Unfortunately, finding any vertex is almost as expensive as finding the
best one.

Typical strategy: The “two-phase simplex method”

Starting the simplex method

95

Starting point: Consider the problem

Without loss of generality, we can assume that . We seek a
feasible vertex of the feasible set and a corresponding basis.

Consider now the auxiliary problem

Notes:
● For no (feasible) choice of y can the objective function of the

auxiliary problem be negative.
● It is zero if x is a feasible point of the original problem.
● It is positive if there is no feasible point of the original problem.

Starting the simplex method

min x∈ℝn c
T

x
 A x=b
 x≥0

b≥0

min x∈ℝn , y∈ℝm 1,1,... ,1
T

y
 A x y=b
 x≥0
 y≥0

96

Consider the auxiliary problem

We can solve this problem using the simplex algorithm as discussed,
starting with the feasible vertex (x=0, y=b). The algorithm terminates
with either of these outcomes:

● The objective function is positive: The original problem has no
feasible point

● The objective function is zero: Then, y=0 and x is a feasible vertex
with respect to the original problem.
Furthermore, at least n variables among the x,y are at their bounds,
and at most m variables are greater than zero

Starting the simplex method

min x∈ℝn , y∈ℝm 1,1,... ,1
T

y
 A x y=b
 x≥0
 y ≥0

97

However, we need more to start the simplex algorithm on the
original problem:

We need a basis H, which then implies the location of the vertex as well
as the basis matrix B.

Can we use the final basis H
aux

 (consisting of m free variables) of the

simplex algorithm applied to the auxiliary problem?

● If the vertex we find is non-degenerate, then all m entries in H
aux

 are

components of x (because y=0) and we can use H=H
aux

● If the vertex is degenerate, then H
aux

 contains variables that are zero

at the solution and could contain auxiliary variables y.
We then need a procedure to “drive artificial variables out of the
basis”.

Starting the simplex method

98

Driving artificial variables out of the basis:

H
aux

 has m entries but some of them correspond to auxiliary variables

and only k<m non-artificial entries.

We need a basis H with m non-artificial entries. We can let currently
non-basic variables x

i
 (for which x

i
=0) enter this basis, but we need to

make sure that the corresponding basis B retains full rank. The
following procedure guarantees this:

While k<m:

● Let be an index in H
aux

 so that (H
aux

)
l
corresponds to an

artificial variable

● Choose j<m so that

● Replace and re-assemble B
aux

.

Starting the simplex method

lk ,l≤m

Baux
−1 A jl≠0

H aux  H aux∖ { H aux l}∪{ j }

99

1.Remove linearly dependent constraints from the matrix A

2.Multiply constraints as necessary so that

3.Introduce artificial variables and solve the auxiliary problem

4.If the objective function at the solution is positive the original problem
does not have a feasible solution. Terminate.

5.Given H
aux

, B
aux

, drive artificial variables out of the basis until they

only contain non-artificial variables

6.Set H=H
aux

, B=B
aux

7.Solve the original problem using the simplex algorithm

The two-phase simplex algorithm

b≥0

y ∈ℝ
m

100

Naïve implementation:

In a naïve implementation, in each iteration we have to
● Compute B-1 O(m3)
● Compute reduced costs O(m(n-m))
● Compute a search direction O(m3)
● Compute a step length O(m)

Thus, the total effort is O(m3+mn) per visited vertex.

Better implementations: We can achieve the same result using only
O(m2+mn) operations per visited vertex. This uses, for example,
updating rules to compute B-1 from the basis matrix used in the previous
iteration.

Implementing the simplex method

101

Overall complexity: In the best case, each iteration costs O(m2+mn).
How many iterations does one need?

In practice: In most applications, the number of iterations appears to
be a small multiple of the number of constraints m.

In theory: For most pivoting rules, examples are known where every
single vertex is visited. These examples typically involve the 2n vertices
of the unit cube with n variables and m=2n constraints.

Questions:
● How often does this happen?
● Is this a property of individual algorithms/pivoting rules?
● Is this a property of linear problems?

Complexity of the simplex method

102

Definition: The distance d(x,y) between two vertices x,y of a
polyhedron P is the length of the shortest sequence of steps through
intermediate vertices.

Definition: The diameter diam(P) of a polyhedron P is the maximal
distance between any two vertices of P.

 y

x

d(x,y)=2

diam(P)=2

Complexity of the simplex method

103

Corollary: For any pivoting rule, for a bad choice of initial vertex, we
always need to expect that we need at least diam(P) iterations.

Question: Do we know anything about diam(P) for given n,m?

Complexity of the simplex method

104

Definition:

Let

Corollary:

Complexity of the simplex method

n, m = max A ∈ℝ
m× n

P={x∈ℝn: Ax≥b}

P is bounded

 diam P

u n ,m  = max A∈ℝ
m ×n

P={x∈ℝn : Ax≥b}

 diam P

 n, m ≤ u n ,m 

 2,m  = ⌊
m
2

⌋

u 2, m = m−2

105

Hirsch conjecture:

Consequence: This would imply that we could hope to find a pivoting
rule that always terminates in O(m) iterations for bounded problems.

Theorem:

In other words, the best known upper bound for the diameter of
unbounded polyhedra is not exponential, but worse than polynomial in
n,m.

Complexity of the simplex method

n, m ≤ m−n

n, m ≤ u n ,m 

m−n−⌊
n
5

⌋ ≤  un, m ≤ 2n
log 2 m

106

Theorem (Borgwardt 1982):

Consider solving the following problem with the “shadow vertex”
variant of the simplex algorithm

where the vectors c, a
i
 are chosen randomly in .

Then the average number of iterations necessary is less than

Note: This does not match practical experience.

Complexity of the simplex method

min x∈ℝnc
T

x
 a i x≥1, i=1. ..m

ℝ
n
∖ {0}

17 n3 m
1

n−1

107

Theorem (Haimovich, Adler 1982):

Consider solving the following problem with the “shadow vertex”
variant of the simplex algorithm

where the vectors c, a
i
,b are chosen randomly with some assumptions.

Then the average number of iterations necessary is less than

Under less stringent assumptions, the number of iterations is bounded
by

Complexity of the simplex method

min x∈ℝnc
T

x
 a i x≥bi , i=1... m

n
m−n2

m1

C min {m−n
2,

n
2
}

	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107

